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Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching 
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ReEtching produces nanostructured silicon when a catalytic agent, 
e.g. dissolved V2O5, is used to facilitate etching between Si and 
H2O2. H2O2 regenerates dissolved V in a 5+ oxidation state, which 
initiates etching by injecting holes into the Si valence band. 
Independent control over the extent of reaction (controlled by the 
amount of H2O2 added) and the rate of reaction (controlled by the 
rate at which H2O2 is pumped into the etchant solution) allows us 
to porosify Si substrates of arbitrary size, shape and doping, 
including wafers, single-crystal powders, polycrystalline powders, 
metallurgical grade powder, Si nanowires, Si pillars and Si 
powders that have been textured with metal-assisted catalytic 
etching (MACE). Similarly, improved control over the nucleation 
and etching in MACE is achieved by pumped delivery of reagents. 
Nanowires are not produced directly by MACE of powders, rather 
they form when a porosified layers is cleaved by capillary forces or 
sonication.  
 

*E-mail: kkolasinski@wcupa.edu 
‡Current address: Advanced Characterization Dept., Honeywell UOP, Des Plaines, IL 
60017 

 
Introduction 

 
Porous Si (por-Si) and silicon nanowires (SiNW) have appeared in technologies such as 
bioelectronics (1), catalysis (2), nanoelectronics (3) nanomechanics (4), energetic 
materials (5), and micromachining (6). A great deal of interest in por-Si has been in the 
areas of biomaterials (7), drug delivery (8) and sensors (9) because por-Si is a 
biocompatible and biodegradable material (10), the biological behavior of which can be 
controlled by porosity and surface chemistry (11). Silicon has the greatest specific 
capacity among elements that alloy with lithium; thus, it is of interest in advanced battery 
designs (12) and its introduction into commercial batteries has begun (13). In 
publications (14-18) and patents (19-21), the etching of Si powders has been constrained 
by low efficiency and an inability to etch completely through the particle. Conventionally, 
stain etching is treated like a simple chemical reaction: mix together Si and the amount of 
oxidant required by stoichiometry to react with the quantity of Si to be etched. Stir. 
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Separate the porous powder from the spent etchant. Characterize the disappointing 
product. 

Here we develop a new concept in electroless etching (22) which we call regenerative 
electroless etching (ReEtching), that is potentially applicable to any semiconductor. As 
shown in Fig. 1, we use a catalytic amount of V2O5 dissolved in HF(aq), which produces 
VO2

+. This is the primary oxidant that injects holes h+ into the Si valence band, a 
necessary condition for nanostructuring (23,24). VO2

+ is an optimal oxidant for the 
initiation of Si electroless etching (25,26). The technique regenerates a V(V) species by 
using H2O2 ($0.5 kg–1) – an oxidant that is known not to produce porous Si in the absence 
of a metal particle catalyst (27) – in place of the vast majority of V2O5 ($50 kg–1), which 
simultaneously enhances economic viability and process control (reducing heating and 
eliminating precipitation of impurities). 
 

 
 
Figure 1.  Schematic representation of ReEtching cycle. V(V) injects a hole h+ to initiate the 
etching of a Si atom and produce reduced V(IV). H2O2 regenerates V(V) by oxidizing V(IV). 
 

 
Results and Discussion 

During etching a V(V) species is converted quantitatively to V(IV) (28). We observed 
(22) that H2O2 regenerates an oxovanadium(V) ion from the V(IV) species. We use the 
regeneration of V(V) by H2O2 as the basis of a new concept in etching. A catalytic 
amount of V2O5 is added to HF (0.05–0.5 g compared to the 6.5 g required by 
stoichiometry to etch 1 g of Si). After initiation of etching of Si dispersed in HF(aq) with 
a mixture of V2O5 + HF, we add H2O2 via a syringe pump. H2O2 regenerates the oxidant 
that initiates electroless etching. The H2O2 injection rate controls the rate of etching. The 
amount of Si etched is controlled by the amount of H2O2 added. Slow continuous 
addition of H2O2 reduces the thermal load on the system and produces a steady-state etch 
rate that facilitates thick film formation. Scaling to large batches is possible because the 
thermal load is greatly reduced and because a suitably low concentration of oxidant is 
maintained by slow addition of H2O2 rather than large volumes. The temperature of the 
reaction mixture is controlled by placing the reaction vessel, i.e. Teflon or plastic beaker, 
in an ice/water or thermostatted bath. The use of acetic acid as a surfactant during 
ReEtching greatly enhances the product yield, reduces foaming and improves 
homogeneity. 

 Hierarchical Si nanostructures containing pores within pores are produced by 
etching porous Si powder made by (1) pulverization of an anodized wafer, (2) 
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porosification of Si powder by MACE, or (3) harvesting Si nanowires from MACE-
etched metallurgical-grade Si powder particles by sonication. For short, we call the 
material produced by ReEtching anodized porous silicon (RaPSi). Mesoporous Si or 
SiNW that were initially nonluminescent can be ReEtched to produce brilliantly 
photoluminescent powder with extremely high specific surface area. In one experiment, 
mesoporous powder with an initial pore size ~17 nm produced by anodization was used 
as starting material. ReEtching introduced ~4 nm nanopores into the walls of the 
mesopores. We measured specific surface areas over 400 m2 g–1 from metallurgical grade 
powder and as high as 888 m2 g–1 when ReEtching anodized porous powder. This 
material was ball milled to form porous nanoparticles with very high yield. Nanoparticles 
with a width of ~150 nm are attractive for use in intravenous drug delivery. ReEtching 
allowed us to create porous layers > 20 µm thick. Depending on the etching and drying 
conditions, such layers can result in the formation of amorphous silicon pillars that are > 
20 µm in height. 

ReEtching of metallurgical grade powder represents an inexpensive method of 
producing porous silicon powders with tortuous ~3–4 nm pores that is scalable to large 
quantities for use in applications such as lithium ion batteries (LIB), drug delivery and 
imaging enhancement. MACE of metallurgical-grade Si, as shown in Fig. 2(a), or 
electronics-grade, image not shown, leads to porosification of the powder particles 
through the formation of etch track pores. Capillary forces that arise either during etching 
because of bubble formation or during drying occasionally cleave the walls of the etch 
track pores to produce a very small number of SiNW. However, if the powder is 
dispersed in ethanol and subjected to ultrasonic agitation, the porous layer is rapidly 
removed from the porous film. The pore walls cleave at their narrowest points to produce 
SiNW with remarkably straight walls. The nanowires harvested from metallurgical-grade 
powder, Fig. 2(b), exhibit mesoporosity whereas the nanowires rendered from 
electronics-grade powder, Fig. 2(c), are solid core. This is consistent with the results first 
reported by Hochbaum et al. (29) and later confirmed by Li et al. (30) that mesoporosity 
is observed in etch track pore walls when MACE is performed on heavily doped wafers. 

 

 
 

         (a)         (b)     (c) 
Figure 2.  (a) Secondary electron scanning electron microscopy (SEM) image of metallurgical 
grade Si powder porosified by MACE. Cleaving the porous layer by sonicating in ethanol creates 
SiNW. (b) Transmission electron microscopy (TEM) image of 575 nm diameter SiNW with 6–15 
nm pores from metallurgical grade Si powder. (c) TEM image of solid 350 nm diameter SiNW 
from electronics grade Si powder. 
 

Photoluminescence (PL) bands from blue to red have been observed. PL in the red to 
near IR is extremely long lived, exhibiting multi-exponential decay with lifetime 
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components in excess of 100 µs. Such long-lived PL from Si nanoparticles is promising 
for bioimaging applications in which image acquisition is delayed after the initial 
photoexcitation. 

Calculations of electrostatic and van der Waals forces acting between the metal 
nanoparticle that catalyzes MACE and the Si substrate reveal that a strong attractive force 
pins the catalytic nanoparticle to the Si surface throughout the etch process.  

Electron microscopy reveals a strong preference for the metal nanoparticles 
responsible for MACE to etch along 001  directions. Preferential etching along the 
001  directions has been noted previously and ascribed to a so-called backbond model 

(31-40), though this model has not been developed quantitatively in the literature. 
We have developed a quantitative model to describe the crystallographic dependence 

of MACE. This model allows us to estimate the temperature dependence of the MACE 
etch rate, formation energy of a pore and, by extension, the preferred structure of etch-
track pores/SiNW produced by MACE. The model is derived from the following ideas 
(1) the mean strength of a Si–Si bond E exhibits no crystallographic dependence and is 
equal to half the cohesive energy of Si Ec,, (2) surface crystallography determines the co-
ordination of Si atoms as well as the areal density of Si–Si bonds that must be broken 
during etching, and (3) the energy per unit area required to form an etch track pore (etch 
energy γ hkl

etch ) contains contributions from etching at the base of the metal nanoparticle as 
well as pore side-wall formation. 

The details of this model will be reported elsewhere. Briefly, the expression 
(assuming etching in only one direction and sidewalls of only one crystallographic 
orientation with sidewalls perpendicular to a planar etch front) is 

Epore = γ hkl
etch Acat + ′γ hkl

etch Asw      [1] 

where Acat is the area beneath the catalyst, Asw is the sidewall area, and γ hkl
etch is the energy 

cost per unit area of etching a plane of Si(hkl). 
From the model we can conclude that the etch energy is not directly anti-correlated 

with the surface energy. Instead, the relationship is more complex and depends not only 
on the surface crystallography, which determines the number of Si–Si bonds broken per 
unit cell as well as the unit cell size, but also on the metal catalyst particle size. The 
sidewall term rapidly looses significance above ~15 nm. Interestingly this size 
corresponds to the size range over which the inverse (but related) vapor-liquid-solid 
(VLS) growth process was observed by Wu et al. (41) to undergo a change in the 
preferred orientation of SiNW growth. Presumably, this change in VLS growth direction 
is related to a similar dependence of growth direction on the balance between sidewall 
formation energy and growth-front formation energy. 

It should be realized that metal-catalyzed etching is a kinetically controlled 
phenomenon. It does not produce etch track pores with the lowest possible surface energy. 
Instead it creates structures that are created by the lowest activation energy pathway. 
Therefore, the primary reason for etch-track pore formation along the 001  directions 
for isolated > 15 nm metal particles is that this is the lowest activation energy pathway. 
However, there is strong evidence for correlated motion between catalyst particles.  
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