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High-voltage anodization is well known for producing 
nanostructures such as porous alumina and TiO2 nanotubes. The 
formation mechanisms involve an intricate balance between oxide 
growth and dissolution in which pore initiation and propagation is 
convoluted with the need for strain relief. Laser ablation with a 
nanosecond pulsed Nd:YAG laser (532 nm) produces texture e.g. 
arrays of pillars, macropores and ripples. Nanoparticles produced 
in the ablation plume can also be deposited on the target or a 
remote substrate. These substrates are anodized in solutions 
typically used for porous film and nanotube production (including 
viscous fluoride-containing electrolytes). A number of metals have 
been investigated, with emphasis here on Al and Ti as well as Zn. 
Laser pre-texturing results in the formation of structures 
unattainable by anodization alone. Deposited nanoparticles of Al 
and Zn are found to act as seeds for the growth of oxide crystallites 
that fuse into porous crystallite films. 
 

Introduction 
 
In this paper, we report what we believe to be the first instance of room temperature 
formation of nanocrystalline alumina through a combination of nanoparticle deposition 
and electrochemical anodization of the substrate unto which the nanoparticles are 
deposited. Nanoparticles are generated in the plume created by laser ablation of a 
polycrystalline metal foil. Thin films of metal oxides such as porous Al2O3 and TiO2 
nanotubes are commonly formed by anodization in which the balance between etching 
and oxide growth is responsible for structure formation (1). Previous studies have shown 
the elegance and efficiency of either a one-step or two-step anodization (2-6). These films 
are amorphous as formed. The most common and general route to the formation of 
polycrystalline thin films of these oxides is to anneal the as-formed film. Here we report 
that anodization can lead to formation of crystalized oxidized aluminum at room 
temperature in the absence of annealing. The key to this process is the presence of Al 
nanocrystals, which act as seeds for the growth of the oxide crystallites. The Al 
nanocrystals are formed in a laser ablation plume. We demonstrate that crystalline oxide 
films can be grown from the nanoparticles when they are (i) deposited on the laser 
ablation target, (ii) deposited on an Al substrate remote from the laser ablation target, and 
(iii) deposited on a Ti substrate remote from the laser ablation target. We believe that 
large Al nanocrystals (>20 nm in diameter) act as seeds; whereas the majority of small Al 
nanocrystals (< 5 nm) act as feedstock for the initial growth stage of the oxide crystallites. 
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     Laser irradiation close to the ablation threshold readily produces texture in the surface 
of the irradiated substrate (7-9). A variety of structures including ripples, pillars and 
pores can be formed depending on a number of parameters including laser power, number 
of shots, and gas pressure and composition above the sample (10). Structure formation on 
silicon (11-14), titanium (15), and germanium (12, 16) has been investigated in some 
detail in our lab with both nanosecond and femtosecond pulsed lasers.  
 
     Laser ablation is always accompanied by plume formation, which results from the 
ejection of atoms and clusters from the target. The extent of the plume and its collision 
dynamics depend on gas pressure and composition in the chamber above the target, the 
laser fluence, and the material being ablated (17-19). The temperature of the plume is 
initially several thousand kelvin; but as the particles relax radiatively and collisionally 
they condense and eventually solidify. Depending on the pressure in the chamber during 
the ablation process, these particles can either redeposit on the surface of the metal or 
precipitate within the chamber. Both processes occur at all pressures but the proportion of 
redeposition compared to remote deposition increases as the pressure increases. 
 

Experimental 
 
     High purity 0.20 mm thick polished metal foils were obtained from Goodfellow (Al 
99.0%, Ti 99.6%) or Baker (Zn ribbon "Baker analyzed"). These foils were cut into 
approximately 1 cm2 pieces and cleaned through sonication with acetone and ethanol for 
five min in each solvent. All samples were irradiated with a Nd:YAG laser 
(SpectraPhysics Indi producing 160 mJ at 532 nm in 6–7 ns pulses and a 20 Hz repetition 
rate). The laser fluence onto the sample is adjusted to just above the ablation threshold by 
the positioning a 50 cm lens. The samples are held within a stainless steel vacuum 
chamber pumped by an alumina-trapped mechanical pump. During ablation, the vacuum 
chamber was purged with flowing argon gas. The target was translated linearly at a speed 
of 0.04 mm s–1 during laser irradiation to expose a stripe on the target to a sufficient 
number of laser shots. During laser ablation Ar is allowed to flow through the chamber to 
maintain a steady-state pressure of either 20 mbar (which we will call low pressure 
conditions) or 200 mbar (high pressure). During deposition onto a remote substrate, the 
chamber is pumped to approximately 1 mbar in the absence of Ar flow. After irradiation, 
samples were inspected with scanning electron microscopy (SEM) then anodized. 
 
     Anodization of Ti and Zn was performed in a well-stirred electrolyte of 0.3 wt% 
NH4F/ ethylene glycol contained in a Teflon beaker held at 273 K by contact with an 
ice/water bath. Aluminum was anodized with this electrolyte or in 0.5 M H2SO4. A 
platinum foil is used as the cathode. An Agilent E3612A power supply was operated in a 
constant voltage mode during anodization. Ballast resistors added to the circuit were used 
to limit the maximum current. Anodization durations were between 2–27 hours for all 
samples. After anodization, all samples were rinsed first three times in ethanol and finally 
once in acetone. After rinsing, the samples were dried in a flow of He/N2 or Ar. 
 
      After laser ablation and anodization, all samples were imaged with secondary electron 
scanning electron microscopy (SEM) images obtained in an FEI Quanta 400 
Environmental SEM operating at 20 kV in high vacuum mode and using an Everhardt-
Thornley detector. In order to determine the crystallinity of the aluminum particles, 
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imaging and selective area diffraction were performed with an FEI Tecnai T12T 
transmission electron microscope (TEM) operating at 120 kV. 
 

Results and Discussion 
 

  
Figure 1 TiO2 nanotubes shown in cross section at (a) low and (b) high magnification. 

 
     Anodization as described above was performed on three different types of metal 
substrates. When performed on unablated Al or Ti, anodization leads to the formation of 
porous alumina or TiO2 nanotubes as reported in the literature (2-6). Figure 1 displays 
typical images of TiO2 nanotubes consistent with those reported in the literature (2, 3). 
The new procedure reported here are that we have also anodized laser ablated substrates 
or substrates upon which nanoparticles have been deposited. 
 

  
Figure 2(a) Plan view SEM micrograph of Al pillars produced by laser ablation in 200 
mbar Ar background pressure. (b) Structure formed in the same sample after anodization 
in 0.5 M H2SO4 for 4 h. 
 
     Figure 2(a) exhibits the topology of an Al substrate that has been irradiated with the 
Nd:YAG laser. The region of the substrate irradiated with the high intensity portion of 
the laser beam profile exhibits an irregular array of more or less conical pillars. The 
sample appears black to the eye. When anodized at 20 V the topology is modified as 
shown in Fig. 2(b). Remnants of the pillars can be found. Surprisingly, oxidation has lead 
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to a tissue like appearance. Higher resolution images reveal that the aluminum oxide has 
cleaved into sheets as thin as 50 nm in width. No evidence of pore formation is found. 
Some combination of the damage introduced by laser ablation and the initial pillar 
morphology has completely changed the structure formation dynamics. The open 
structure shown in Fig. 2(a) certainly opens up new avenues for strain relief as the oxide 
grows. The imposition of pillars upon the natural length scale of growth instabilities 
normally associated with anodiziation under these conditions has changed the growth 
mode from a pore-formation regime to a cleaved-sheet regime. 
 
     Laser ablation produces nanoparticles within the ablation plume (17, 20). The 
structure of deposited nanoparticles depends sensitively on the deposition conditions. 
When Al was deposited at low density on a TEM grid, we found many nanoparticles with 
diameters of ≤ 5 nm. In addition, a few larger nanoparticles were found, most in the 20–
100 nm range but some even larger. Observation of distinct diffraction spots from the 20 
nm and larger nanoparticles indicates that Al nanoparticles are crystalline. However, Ti 
nanocrystals have not been found to exhibit sharp diffraction patterns. When deposited at 
higher density, the nanoparticles aggregate into structures such as those shown in the 
SEM image of Fig. 2(a). Most of the features shown in Fig. 2(a) are agglomerations of 
much smaller particles. At even higher loading, Fig. 2(b), the agglomerated features turn 
into cauliflower like structures. At even higher loading the cauliflower structures grow in 
height. Such features are found on both Al and Ti substrates. 
 

  
 

Figure 3 SEM micrographs of Ti nodules 50–750 nm in diameter at (a) lower and (b) 
higher packing density. The particles are redeposited on the ablation target. The density 
of redeposition decreases with distance away from the center of the stripe made by the 
incident laser. 
 
     When nanoparticle-decorated Al substrates were anodized, a completely different film 
structure is found compared to the pillar-covered region. Nanocrystallites of oxide are 
formed. As anodization continues, these nanocrystallites grow and eventually fuse. 
Figure 4 shows the regular shapes and flat angled faces that are clear indications of 
crystalline character. These aluminum oxide crystallites have only been observed in 
regions of the crystal that are initially covered with nanoparticles. They have been 
observed on ablated Al substrates in regions where the nanoparticles were redeposited 
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from the ablation plume. They have been observed on nonablated Al substrates upon 
which the nanoparticles precipitated after ablation of an Al target. They have also been 
observed on a Ti substrate upon which Al nanoparticles were deposited by laser ablation 
of an Al target. In the latter case, the aluminum oxide crystallites only grew until the 
deposited Al has all been oxidized. The crystalline Al nanoparticles were clearly acting as 
seeds that template for the formation of aluminum oxide crystallites. The low density of 
oxide crystallites formed most likely indicated that the larger (>20 nm) Al nanocrystals 
were acting as the seeds rather than the much more numerous ≤ 5 nm Al nanocrystals. 
 

 
Figure 4 Aluminum oxide scepters formed by anodization of nanocrystal-decorated Al 
substrates for 2 h at 60 V in NH3F/ethylene glycol. 
 
     When Ti was decorated with nanoparticles and then anodized in NH3F/ethylene glycol, 
the surface was initially covered with fuzzy debris. However this soon cleared and 
nanotube formation occured just as it would on a non-decorated surface. The behavior of 
a Zn substrate decorated with Zn nanoparticles was much closer to that of aluminum. 
Preliminary results indicated the formation of oxide crystallites at low coverage. 
Furthermore, the regions in which these nanocrystals formed exhibited near-white-light 
photoluminescence when this region was illuminated with 254 nm light. 
 

Conclusion 
 
     The combination of laser ablation with anodization or nanoparticle decoration prior to 
anodization allows us to access structure formation regimes that are unobtainable by 
anodization alone. It appears that nanocrystals of metal can act as templates that seed the 
formation of oxide nanocrystals that then grow into much larger structures. We highlight 
here our results with aluminum oxide structures formed by anodization of laser ablation 
pillars and Al-nanocrystal-decorated substrates. In the former case, a tissue-like structure 
of cleaved planes is formed. In the latter case, an intricate porous film of crystallites is 
formed. Nanocrystalline zinc oxide structures have also been formed which exhibit 
photoluminescence under UV irradiation. 
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