271 research outputs found
Invasion speeds for structured populations in fluctuating environments
We live in a time where climate models predict future increases in
environmental variability and biological invasions are becoming increasingly
frequent. A key to developing effective responses to biological invasions in
increasingly variable environments will be estimates of their rates of spatial
spread and the associated uncertainty of these estimates. Using stochastic,
stage-structured, integro-difference equation models, we show analytically that
invasion speeds are asymptotically normally distributed with a variance that
decreases in time. We apply our methods to a simple juvenile-adult model with
stochastic variation in reproduction and an illustrative example with published
data for the perennial herb, \emph{Calathea ovandensis}. These examples
buttressed by additional analysis reveal that increased variability in vital
rates simultaneously slow down invasions yet generate greater uncertainty about
rates of spatial spread. Moreover, while temporal autocorrelations in vital
rates inflate variability in invasion speeds, the effect of these
autocorrelations on the average invasion speed can be positive or negative
depending on life history traits and how well vital rates ``remember'' the
past
Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web
Large-scale mortality of invasive bivalves
was observed in the River Danube basin in the autumn
of 2011 due to a particularly low water discharge. The
aim of this study was to quantify and compare the
biomass of invasive and native bivalve die-offs
amongst eight different sites and to assess the potential
role of invasive bivalve die-offs as a resource subsidy
for the adjacent terrestrial food web. Invasive bivalve
die-offs dominated half of the study sites and their
highest density and biomass were recorded at the
warm water effluent. The density and biomass values
recorded in this study are amongst the highest values
recorded for aquatic ecosystems and show that a
habitat affected by heated water can sustain an extremely high biomass of invasive bivalves. These
mortalities highlight invasive bivalves as a major
resource subsidy, possibly contributing remarkable
amounts of nutrients and energy to the adjacent
terrestrial ecosystem. Given the widespread occurrence
of these invasive bivalves and the predicted
increase in the frequency and intensity of extreme
climatic events, the ecological impacts generated by
their massive mortalities should be taken into account
in other geographical areas as well.The authors are grateful to David Strayer for valuable comments on a previous version of the manuscript. Special thanks to the Danube-Ipoly National Park for the help in field work. Ronaldo Sousa was supported by the project "ECOIAS" funded by the Portuguese Foundation for the Science and the Technology and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010)
Epibiotic pressure contributes to biofouling invader success
Reduced competition is a frequent explanation for the success of many introduced species. In benthic marine biofouling communities, space limitation leads to high rates of overgrowth competition. Some species can utilise other living organisms as substrate (epibiosis), proffering a competitive advantage for the epibiont. Additionally, some species can prevent or reduce epibiotic settlement on their surfaces and avoid being basibionts. To test whether epibiotic pressure differs between native and introduced species, we undertook ex situ experiments comparing bryozoan larval settlement to determine if introduced species demonstrate a greater propensity to settle as epibionts, and a reduced propensity to be basibionts, than native species. Here we report that introduced species opportunistically settle on any space (bare, native, or introduced), whereas native species exhibit a strong tendency to settle on and near other natives, but avoid settling on or near introduced basibionts. In addition, larvae of native species experience greater larval wastage (mortality) than introduced species, both in the presence and absence of living substrates. Introduced species’ ability to settle on natives as epibionts, and in turn avoid epibiosis as basibionts, combined with significantly enhanced native larval wastage, provides a comprehensive suite of competitive advantages contributing to the invasion success of these biofouling species
Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.
Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government’s Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could ‘clean’ their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ2 = 117.24, p < 0.001; 1 day χ2 = 95.68, p < 0.001; 8 days χ2 = 12.16, p < 0.001 and 16 days χ2 = 7.58, p < 0.001). Drying caused significantly higher mortality than the control (no action) from day 4 (χ2 = 8.49, p < 0.01) onwards. In the absence of hot water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns
Facilitation and Competition among Invasive Plants: A Field Experiment with Alligatorweed and Water Hyacinth
Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed
Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens
Invasive non-native species (INNS) endanger native biodiversity and are a major economic problem. The management of pathways to prevent their introduction and establishment is a key target in the Convention on Biological Diversity's Aichi biodiversity targets for 2020. Freshwater environments are particularly susceptible to invasions as they are exposed to multiple introduction pathways, including non-native fish stocking and the release of boat ballast water. Since many freshwater INNS and aquatic pathogens can survive for several days in damp environments, there is potential for transport between water catchments on the equipment used by recreational anglers and canoeists. To quantify this biosecurity risk, we conducted an online questionnaire with 960 anglers and 599 canoeists to investigate their locations of activity, equipment used, and how frequently equipment was cleaned and/or dried after use. Anglers were also asked about their use and disposal of live bait. Our results indicate that 64% of anglers and 78.5% of canoeists use their equipment/boat in more than one catchment within a fortnight, the survival time of many of the INNS and pathogens considered in this study and that 12% of anglers and 50% of canoeists do so without either cleaning or drying their kit between uses. Furthermore, 8% of anglers and 28% of canoeists had used their equipment overseas without cleaning or drying it after each use which could facilitate both the introduction and secondary spread of INNS in the UK. Our results provide a baseline against which to evaluate the effectiveness of future biosecurity awareness campaigns, and identify groups to target with biosecurity awareness information. Our results also indicate that the biosecurity practices of these groups must improve to reduce the likelihood of inadvertently spreading INNS and pathogens through these activities
Modality matters for the expression of inducible defenses: introducing a concept of predator modality
Background: Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in `modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. Results: We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a `concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. Conclusion: With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a `concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic `costs of plasticity'. With that, we suggest that `modality' matters as an important factor in understanding and explaining the evolution of inducible defenses
Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability
Corbicula fluminea is considered one of the
most important non-native invasive species (NIS) in
aquatic systems mainly due to its widespread distribution
and ecological and economic impacts. This species
is known to negatively affect native bivalves, also with
severe effects on biodiversity and ecosystem functioning.
Throughout an exhaustive bibliographic survey and
with the aid of Geographic Information Systems tools,
this study tracks the species dispersion from its native
range, including the description of important physical
and environmental barriers. Additional analyses were
conducted to examine possible influences of latitudinal/
temperature gradients on important traits (e.g. life span,
maximum and mean body length, growth at the end of
first year). Altitude and winter minimum temperature
appear to be delaying the invasion worldwide, but it
seems inevitable that the species will spread across the
globe. Latitude and summer temperature show a
relationship with growth and life span. Overall, the
information gathered in this review may be relevant to
forecast future distribution patterns of this NIS, and to
anticipate the possible implementation of effective
management measures. Moreover, it may constitute a
valuabletool inthe prediction of population responses to
an increasingly changing environment.This research was supported by FCT
(Portuguese Foundation for Science and Technology), through
a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a
post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012)
and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED
project (PTDC/MAR/111901/2009), subsidized by the
European Social Fund and MCTES (Ministério da Ciência,
Tecnologia e Ensino Superior) National Funds, through the
POPH (Human Potential Operational Programme), QREN
(National Strategic Reference Framework) and COMPETE
(Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio
Leaky doors: private captivity as a prominent source of bird introductions in Australia
The international pet trade is a major source of emerging invasive vertebrate species. We used online resources as a novel source of information for accidental bird escapes, and we investigated the factors that influence the frequency and distribution of bird escapes at a continental scale. We collected information on over 5,000 pet birds reported to be missing on animal websites during the last 15 years in Australia. We investigated whether variables linked to pet ownership successfully predicted bird escapes, and we assessed the potential distribution of these escapes. Most of the reported birds were parrots (> 90%), thus, we analysed factors associated with the frequency of parrot escapes. We found that bird escapes in Australia are much more frequent than previously acknowledged. Bird escapes were reported more frequently within, or around, large Australian capital cities. Socio-economic factors, such as the average personal income level of the community, and the level of human modification to the environment were the best predictors of bird escapes. Cheaper parrot species, Australian natives, and parrot species regarded as peaceful or playful were the most frequently reported escapees. Accidental introductions have been overlooked as an important source of animal incursions. Information on bird escapes is available online in many higher income countries and, in Australia, this is particularly apparent for parrot species. We believe that online resources may provide useful tools for passive surveillance for non-native pet species. Online surveillance will be particularly relevant for species that are highly reported, such as parrots, and species that are either valuable or highly commensal.Miquel Vall-llosera, Phillip Casse
The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis
Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species–particularly in freshwater and marine environments–is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow
- …
