27 research outputs found

    Intravenously Administered Alphavirus Vector VA7 Eradicates Orthotopic Human Glioma Xenografts in Nude Mice

    Get PDF
    VA7 is a neurotropic alphavirus vector based on an attenuated strain of Semliki Forest virus. We have previously shown that VA7 exhibits oncolytic activity against human melanoma xenografts in immunodeficient mice. The purpose of this study was to determine if intravenously administered VA7 would be effective against human glioma.In vitro, U87, U251, and A172 human glioma cells were infected and killed by VA7-EGFP. In vivo, antiglioma activity of VA7 was tested in Balb/c nude mice using U87 cells stably expressing firefly luciferase in subcutaneous and orthotopic tumor models. Intravenously administered VA7-EGFP completely eradicated 100% of small and 50% of large subcutaneous U87Fluc tumors. A single intravenous injection of either VA7-EGFP or VA7 expressing Renilla luciferase (VA7-Rluc) into mice bearing orthotopic U87Fluc tumors caused a complete quenching of intracranial firefly bioluminescence and long-term survival in total 16 of 17 animals. In tumor-bearing mice injected with VA7-Rluc, transient intracranial and peripheral Renilla bioluminescence was observed. Virus was well tolerated and no damage to heart, liver, spleen, or brain was observed upon pathological assessment at three and ninety days post injection, despite detectable virus titers in these organs during the earlier time point.VA7 vector is apathogenic and can enter and destroy brain tumors in nude mice when administered systemically. This study warrants further elucidation of the mechanism of tumor destruction and attenuation of the VA7 virus

    Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus

    Get PDF
    BACKGROUND: The rising demand for pork has resulted in a massive expansion of pig production in Uganda. This has resulted in increased contact between humans and pigs. Pigs can act as reservoirs for emerging infectious diseases. Therefore identification of potential zoonotic pathogens is important for public health surveillance. In this study, during a routine general surveillance for African swine fever, domestic pigs from Uganda were screened for the presence of RNA and DNA viruses using a high-throughput pyrosequencing method. FINDINGS: Serum samples from 16 domestic pigs were collected from five regions in Uganda and pooled accordingly. Genomic DNA and RNA were extracted and sequenced on the 454 GS-FLX platform. Among the sequences assigned to a taxon, 53% mapped to the domestic pig (Sus scrofa). African swine fever virus, Torque teno viruses (TTVs), and porcine endogenous retroviruses were identified. Interestingly, two pools (B and C) of RNA origin had sequences that showed 98% sequence identity to Ndumu virus (NDUV). None of the reads had identity to the class Insecta indicating that these sequences were unlikely to result from contamination with mosquito nucleic acids. CONCLUSIONS: This is the first report of the domestic pig as a vertebrate host for Ndumu virus. NDUV had been previously isolated only from culicine mosquitoes. NDUV therefore represents a potential zoonotic pathogen, particularly given the increasing risk of human-livestock-mosquito contact

    Mosquito-borne arboviruses of African origin: review of key viruses and vectors

    Get PDF
    Abstract Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but that there are several other viruses with potential for international challenge. The conclusion reached is that increased human population growth in decades ahead coupled with increased international travel and trade is likely to sustain and increase the threat of further geographical spread of current and new arboviral disease

    Chikungunya in Mozambique: A Forgotten History.

    Get PDF
    The motion of a walking biped has rich information about the contacts with the environment. This paper presents an optimal estimation method of the distributed normal reaction forces at the contact points on the feet soles of walking bipeds. The motion is acquired by employing the inertial measurement unit (IMU) and the joint-encoder readings into Newton-Euler dynamic equations without using any force sensor model. The quadratic programming optimization method is used. The validity of the proposed estimation method was confirmed by simulations on 3D dynamics model of the humanoid robot SURALP while walking

    Mosquito-borne arboviruses of African origin: review of key viruses and vectors

    No full text
    corecore