117 research outputs found

    Corporate cash hoarding and corporate governance mechanisms : evidence from Borsa Istanbul

    Get PDF
    This study aims to examine the impact of corporate governance mechanisms on the cash hoarding decision. The study focuses on BIST100 non-financial firms listed on Borsa Istanbul over the period from 2010 to 2014. The study finds that firms with larger size of board of directors are more likely to hoard cash than firms with smaller board size. However, it finds firms with larger size of audit committee are more likely to hold less cash than firms with smaller audit committee size. Besides, it finds that firms with larger percent of independent directors are more likely to hoard more cash than firms with smaller percent of independent directors. It, also, finds that when the CEO of a firm is also the chairman, the firm tends to hoard more cash. Further, the study finds that firms audited by non-big auditor are more likely to hold more cash than firms audited by big auditor. The results suggest that firms with good corporate governance mechanisms (except for percent of independent directors) are less likely to hoard cash

    Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation

    Get PDF
    A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go–related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors

    Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)

    Get PDF
    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80–85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery

    Photochemical activation of TRPA1 channels in neurons and animals

    Get PDF
    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans

    Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.

    Get PDF
    Small, early life stages, such as zebrafish embryos are increasingly used to assess the biological effects of chemical compounds in vivo. However, behavioural screens of such organisms are challenging in terms of both data collection (culture techniques, drug delivery and imaging) and data evaluation (very large data sets), restricting the use of high throughput systems compared to in vitro assays. Here, we combine the use of a microfluidic flow-through culture system, or BioWell plate, with a novel motion analysis technique, (sparse optic flow - SOF) followed by spectral analysis (discrete Fourier transformation - DFT), as a first step towards automating data extraction and analysis for such screenings. Replicate zebrafish embryos housed in a BioWell plate within a custom-built imaging system were subject to a chemical exposure (1.5% ethanol). Embryo movement was videoed before (30 min), during (60 min) and after (60 min) exposure and SOF was then used to extract data on movement (angles of rotation and angular changes to the centre of mass of embryos). DFT was subsequently used to quantify the movement patterns exhibited during these periods and Multidimensional Scaling and ANOSIM were used to test for differences. Motion analysis revealed that zebrafish had significantly altered movements during both the second half of the alcohol exposure period and also the second half of the recovery period compared to their pre-treatment movements. Manual quantification of tail flicking revealed the same differences between exposure-periods as detected using the automated approach. However, the automated approach also incorporates other movements visible in the organism such as blood flow and heart beat, and has greater power to discern environmentally-driven changes in the behaviour and physiology of organisms. We suggest that combining these technologies could provide a highly efficient, high throughput assay, for assessing whole embryo responses to various drugs and chemicals

    A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    Get PDF
    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science

    Application guide for omics approaches to cell signaling

    Get PDF
    Research in signal transduction aims to identify the functions of different signaling pathways in physiological and pathological states. Traditional techniques using biochemical, genetic or cell biological approaches have made important contributions to our understanding of cellular signaling. However, the single-gene approach does not take into account the full complexity of cell signaling. With the availability of omics techniques, great progress has been made in understanding signaling networks. Omics approaches can be classified into two categories: 'molecular profiling', including genomic, proteomic, post-translational modification and interactome profiling; and 'molecular perturbation', including genetic and functional perturbations

    Solitary fish hit rock bottom

    No full text

    Transformation of N',N' -dimethyl-N-(hydroxyphenyl)ureas by laccase from the white rot fungus Trametes versicolor

    No full text
    International audienceTransformation of N′,N′-dimethyl-N-(hydroxyphenyl)ureas was assayed in the presence of purified laccase produced by the fungus Trametes versicolor. The para- and ortho-hydroxyphenyl derivatives were enzymatically transformed, whereas the meta derivative was not. The performance of laccase-mediated transformation depended on the pH, with an optimum for the para-derivative degradation rate at pH 5. The pH also influenced the nature of the reaction products. The chemical was exclusively oxidised into p-benzoquinone at pH 3 and into mainly N′,N′-dimethyl-N-[(2,5-cyclohexadiene-1-one)-4-ylidene]urea at pH 6. The ortho- derivative was transformed essentially into insoluble purple compounds, probably appearing as polymers resulting from coupling of the parent compound
    • …
    corecore