57 research outputs found

    On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles

    Get PDF
    a b s t r a c t The turnover of ectomycorrhizal (EM) fungal biomass represents an important litter input into forest biogeochemical cycles. Cenococcum geophilum is a nearly ubiquitous and often abundant EM fungus, making the turnover dynamics of this species relevant and important across forest ecosystems. To better understand the turnover dynamics of C. geophilum ectomycorrhizas we examined their persistence using minirhizotron imaging and vitality status using a fluorescein diacetate (FDA) stain and contrasted these results with ectomycorrhizas of other EM fungi. Ectomycorrhizas formed by C. geophilum persisted 4e10 times longer and exhibited contrasting seasonal patterns of vitality compared to ectomycorrhizas of other EM fungi. Together, this suggests that litter resulting from the death of C. geophilum ectomycorrhizas is relatively recalcitrant to decay and may disproportionately influence forest biogeochemical cycles by retarding the rate at which carbon and nutrients are cycled

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Accretion, structure and hydrology of intermediate spreading-rate oceanic crust from drillhole experiments and seafloor observations

    Full text link
    Downhole measurements recorded in the context of the Ocean Drilling Program in Hole 504B, the deepest hole drilled yet into the oceanic crust, are analyzed in terms of accretion processes of the upper oceanic crust at intermediate spreading-rate. The upper part of the crust is found to support the non steady-state models of crustal accretion developed from seafloor observations (Kappel and Ryan, 1986; Gente, 1987). The continuous and vertical nature of borehole measurements provides stratigraphic and structural data that cannot be obtained solely from seafloor studies and, in turn, these models define a framework to analyze the structural, hydrological, and mineralogical observations made in the hole over the past decade.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43190/1/11001_2005_Article_BF01204282.pd

    The role of resource transfer in positive, non-additive litter decomposition.

    No full text
    Naturally occurring, mixed litter decomposes at unpredictable rates when individual components do not decompose in mixtures as they do individually. Consequently, nutrient, carbon and energy fluxes associated with decomposition may be difficult to predict. However, predictability is improved when we understand the mechanisms responsible for such non-additive decomposition. In this study, we explored mechanisms to explain our previous observation that an approximately 30% increase in oat straw decomposition due to the presence of clover litter is associated with a significant increase in the activity of cellobiohydrolase, an enzyme involved in litter decomposition. We hypothesized that resources limiting decomposer microbe enzyme activity in oat straw can be supplied by clover litter. Amendment of oat straw with water, NH4Cl, glucose, or NH4Cl combined with glucose did not account for the significant, positive effect of clover litter on oat straw decomposition and cellobiohydrolase activity. However, amendment of oat straw with a complete set of mineral nutrients for plant growth did account for the entire effect of clover litter, and the addition of the complete set of mineral nutrients without N accounted for the majority of the clover effect. In our system, therefore, the majority of the positive effect of clover litter on oat straw decomposition and cellobiohydrolase activity was unexpectedly not attributable to the transfer from clover to oat straw of labile N. We found that mineral soil could substitute for the mineral nutrients other than N. This highlights the role of soil as a potential source of limiting resources for microbes decomposing litter. It may also explain why positive, non-additive decomposition has been observed in some previous studies but not in others depending on whether the soil supplied a resource that limited decomposer activity

    The role of inoculum dispersal and plant species identity in the assembly of leaf endophytic fungal communities.

    No full text
    Because of disturbance and plant species loss at the local level, many arid ecosystems in the western USA benefit from revegetation. There is a growing interest in improving revegetation success by purposefully inoculating revegetation plants with mutualistic endophytic fungi that increase plant stress tolerance. However, inoculant fungi must compete against fungi that indigenous to the habitat, many of which may not be mutualistic. Our overall goal, therefore, is to learn how to efficiently colonize revegetation plants using endophytic fungal inoculum. The goal will be facilitated by understanding the factors that limit colonization of plants by endophytic fungi, including inoculum dispersal and host compatibility. We analyzed endophytic fungal communities in leaves of Bromus tectorum and Elymus elymoides (Poaceae), Chrysothamnus depressus and Artemisia tridentata (Asteraceae), Alyssum alyssoides (Brassicaceae) and Atriplex canescens (Amaranthaceae), each occurring in each of 18 field plots. We found that dispersal limitation was significant for endophytic fungal communities of Atriplex canescens and Bromus tectorum, accounting for 9 and 17%, respectively, of the variation in endophytic fungal community structure, even though the maximum distance between plots was only 350 m. Plant species identity accounted for 33% of the variation in endophytic fungal community structure. These results indicate that the communities of endophytic fungi assembling in these plant species depend significantly on proximity to inoculum source as well as the identity of the plant species. Therefore, if endophytic fungi are to be used to facilitate revegetation by these plant species, land managers may find it profitable to consider both the proximity of inoculum to revegetation plants and the suitability of the inoculum to targeted host plant species
    • …
    corecore