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a b s t r a c t

The turnover of ectomycorrhizal (EM) fungal biomass represents an important litter input into forest
biogeochemical cycles. Cenococcum geophilum is a nearly ubiquitous and often abundant EM fungus,
making the turnover dynamics of this species relevant and important across forest ecosystems. To better
understand the turnover dynamics of C. geophilum ectomycorrhizas we examined their persistence using
minirhizotron imaging and vitality status using a fluorescein diacetate (FDA) stain and contrasted these
results with ectomycorrhizas of other EM fungi. Ectomycorrhizas formed by C. geophilum persisted 4e10
times longer and exhibited contrasting seasonal patterns of vitality compared to ectomycorrhizas of
other EM fungi. Together, this suggests that litter resulting from the death of C. geophilum ectomycor-
rhizas is relatively recalcitrant to decay and may disproportionately influence forest biogeochemical
cycles by retarding the rate at which carbon and nutrients are cycled.

! 2013 Elsevier Ltd. All rights reserved.

There is growing interest in understanding the turnover of the
ectomycorrhizal (EM) fungi because of the ubiquity of this group of
organisms and the large quantity of carbon (C) that is allocated to
them by host trees (Hobbie, 2006). Thus, the death of EM fungal
tissues represents a large litter input into forest ecosystem cycles
(Langley and Hungate, 2003; Cairney, 2012; Clemmensen et al.,
2013; Ekblad et al., 2013). Moreover, EM fungi envelop fine roots,
forming a mantle on their exterior and modifying the biochemistry
of litter inputs from fine roots (Langley et al., 2006; Koide et al.,
2011), which are substantial (Jackson et al., 1997). Our knowledge
of the decomposition dynamics of EM fungal litter is relatively poor,
and there is likely a large amount of variation in the decomposition
rates of tissues across species (Koide and Malcolm, 2009;
Fernandez and Koide, 2012; Wilkinson et al., 2011).

The highly melanized asexual Ascomycete EM fungus, Cen-
ococcum geophilum, has a global distribution with little host spec-
ificity (Trappe, 1962). C. geophilum is frequently abundant in EM
communities (Dickie, 2007), thus making the turnover dynamics of
this species relevant and important across forest ecosystems.
Meyer (1964) noted the presence of a large fraction of C. geophilum
ectomycorrhizas that appeared to be dead and hypothesized that
this may be the result of an accumulation of these structures in the
soil from slow decomposition rates. Corroborating this observation
with vitality staining, Qian et al. (1998) found large proportions of
dead C. geophilum ectomycorrhizas, relative to other morphotypes.
The persistence of these structures in soil, however, has not been
examined explicitly. Long persistence times of ectomycorrhizas can
result from either long lifespans or from their resistance to
decomposition after death. The decomposition of ectomycorrhizas
can be faster (Koide et al., 2011) or slower (Langley et al., 2006) than
non-mycorrhizal roots. The differential effects of EM colonization
on root decomposition are likely the result of, among other factors,
differences in the quality of the fungal litter (Koide and Malcolm,
2009; Fernandez and Koide, 2012). Indeed, there is reason to
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suspect that C. geophilum tissues are unusually resistant to
decomposition because it deposits in the cell walls of its hyphae
substantial amounts of melanin, a polymer that is highly resistant
to decomposition (Martin et al., 1959; Kuo and Alexander, 1967;
Hurst and Wagner, 1969; Malik and Haider, 1982).

Given its high abundance in many EM fungal communities and
its global distribution, if C. geophilum is unusually resistant to
decomposition, it may strongly influence biogeochemistry in forest
ecosystems by sequestering large quantities of C and nutrients. We
support this assertion with evidence of differential persistence and
vitality of root tips colonized by C. geophilum compared with
ectomycorrhizas of other EM fungal species assessed with mini-
rhizotron observations and fluorescein diacetate (FDA) vitality
staining.

Minirhizotron observations were conducted at the Duke FACE
site in Durham, North Carolina, USA (detailed in Pritchard et al.,
2008a, 2008b). We used images collected from control rings (i.e.,
ambient CO2) but not experimental rings (i.e., elevated CO2) from
October 1998 to October 2004. Persistence of ectomycorrhizas was
determined by noting the time of the birth (appearance), death
(fragmentation and detachment), and subsequent decomposition
(disappearance) of individual ectomycorrhizas. A total of 121 (10-
right censored) ectomycorrhizas were tracked, 28 of which were
identified as C. geophilum based on this fungus’ distinctive
morphology, which includes a jet-black mantle with emanating
black, wiry hyphae. The data were subjected to KaplaneMeier
survival analysis (Kaplan and Meier, 1958) conducted in SAS JMP
Pro 10 (SAS Institute, Cary, NC, USA).

Because minirhizotron imaging is only able discern the persis-
tence of these structures and not their lifespan (i.e. the period of
time when they are alive), we utilized vitality staining to help
examine whether or not C. geophilum ectomycorrhizas were more
likely to be dead relative to ectomycorrhizas of other species.
Ectomycorrhizas were randomly sampled in the spring (12 May,
2011; n ¼ 102), summer (22 July, 2011; n ¼ 52), and autumn (5
October, 2011; n¼ 51) in a red pine (Pinus resinosaAiton) plantation
located in central Pennsylvania, USA (for site details see Koide et al.,
2007). Ectomycorrhiza vitality was assessed with fluorescein
diacetate (FDA) staining (based on methods from Qian et al., 1998;
Noland and Mohammed, 1997) where the FDA is assumed to be
metabolized by living cells, which causes it to fluoresce under ul-
traviolet light (see Rotman and Papermaster, 1966). Cross sections
were examined under an Olympus SZ40 fluorescence microscope
equipped with a 420e490 nm excitation filter and a 500 nm barrier
filter and were given a vitality ranking (1e3) based on the level of
fluorescence from the cortical cells in the cross sections
(0%¼ dead(1), 1e30%¼ partially vital(2),>30%¼ vital(3)). We used
a cumulative link model with a logit link to examine differences in
the odds of vitality scores "2 between ectomycorrhizas
(1 ¼ C. geophilum; 0 ¼ all other EM fungal species pooled) across
season (spring, summer and autumn) in Program R (R Foundation
for Statistical Computing, Vienna, Austria). We fit a single model
with ectomycorrhiza morphotype, season and an interaction term
using the ordinal package (Christensen, 2012) in R. Coefficients
ðbb $ SEÞ are presented on the logit scale.

Observations from minirhizotrons indicated that C. geophilum
ectomycorrhizas persisted 4e10 times longer than ectomycorrhizas
of other EM fungi (Log-Rank: c2 ¼ 66.2, P < 0.0001; Wilcoxon:
c2 ¼ 48.5, P < 0.0001). Median persistence of C. geophilum ecto-
mycorrhizas was 831 d compared to 129 d for all other ectomy-
corrhizas (Fig. 1). The large difference in persistence (i.e. the
amount of time the individual ectomycorrhizas remained visible in
the soil) between C. geophilum and all other EM species suggests
that either lifespan or resistance to decomposition following death,
or both, is very different.

Overall patterns of vitality among ectomycorrhizas indicated
that C. geophilum ectomycorrhizas likely decomposed more
slowly than other species leading to the increased persistence of
C. geophilum in soil. Compared to other species, C. geophilum
ectomycorrhizas were significantly less vital in spring (bb $ SE ¼
&0.88 $ 0.40, P ¼ 0.03), but not significantly different in vitality in
summer (bb $ SE ¼ &0.74 $ 0.55, P ¼ 0.18) (Fig. 2). C. geophilum
vitality did not significantly change between spring and summer
(bb $ SE¼ 0.14$ 0.68, P¼ 0.84), when only a small fraction (10.0% in
spring, 5.8% in summer) of C. geophilum ectomycorrhizas were
classified as vital. By comparison, a much larger fraction of ecto-
mycorrhizas formed by all other species was vital in spring (32.0%)
and summer (28.6%). In autumn, C. geophilum ectomycorrhizas
were >6 times more likely (¼e1.80) to be partially vital or vital than
in the spring (bb $ SE ¼ 1.80 $ 0.73, P ¼ 0.014) and >5 times more
likely (¼e1.66) to be partially vital or vital than in the summer
(bb $ SE ¼ 1.66 $ 0.82, P ¼ 0.044). In autumn, the percent of vital
C. geophilum ectomycorrhizas increased to 38.5% while the percent

Fig. 1. Kaplan Meier estimates of survivorship for ectomycorrhizas formed by Cen-
ococcum geophilum (solid line, n ¼ 28, 8 censored) and all other species (dashed line,
n ¼ 93, 2 censored). Cenococcum geophilum had a significantly greater lifespan
(median ¼ 821 d) compared to all other species (median ¼ 129 d).

Fig. 2. Mean vitality scores (1 ¼ dead, 2 ¼ partially vital, 3 ¼ vital) $ SE of Cenococcum
geophilum (black solid line) and other ectomycorrhizas (dashed grey line) as measured
during 2011 from a red pine (Pinus resinosa Aiton) plantation located in central
Pennsylvania, USA.
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of vital ectomycorrhizas for all other species decreased to 7.9%, but
this result was non-significant (bb $ SE ¼ 0.92 $ 0.61, P ¼ 0.13).
These contrasting trends in vitality are partially explained by dif-
ferential seasonality among C. geophilum and other EM species
which is supported by observations of patterns of ectomycorrhiza
production made with minirhizotrons (McCormack Unpublished
data).

The long persistence of C. geophilum ectomycorrhizas coupled
with their frequently low vitality during the growing season sug-
gests that a substantial proportion of C. geophilum ectomycorrhizas
found in forest soils are dead and resistant to decomposition. This
recalcitrance may be the result of the heavy deposition of melanin
in the cell walls of this fungus. Melanins are a group of polymers
that are composed of phenolic or indolic monomers which are
complexed with other components of the cell wall (Feofilova, 2010)
and provide the cell protection from various environmental
stressors (Bell andWheeler, 1986; Butler and Day, 1998). Because of
its aromatic and complex chemical structure, the polymer likely has
an analogous effect on the decomposability of fungal tissues, as
lignin has on plant litters, but further confirmation is needed.

The persistence of C. geophilum ectomycorrhizas in the envi-
ronment may significantly retard the rate of C, N, and phosphorous
cycling as they are sequestered in recalcitrant C. geophilum litter.
This not only applies to ectomycorrhizas of C. geophilum, but also to
the large amounts of extramatrical mycelia and sclerotia (resting
structures) that it produces (Hunt and Fogel, 1983; Dahlberg et al.,
1997). Together, our findings suggest that C. geophilum may play a
disproportionate role in the sequestration of C and nutrients in
many forest ecosystems and highlight the differences in decompo-
sition dynamics of litter produced across EM fungal species. Future
assessments of EM fungi should work to better link community
structure and dynamics of both live and dead EM tissues to patterns
of belowground and whole-ecosystem cycling of C and nutrients.
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