7,549 research outputs found

    Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying and superconducting systems

    Get PDF
    Current-carrying and superconducting systems can be treated within density-functional theory if suitable additional density variables (the current density and the superconducting order parameter, respectively) are included in the density-functional formalism. Here we show that the corresponding conjugate potentials (vector and pair potentials, respectively) are {\it not} uniquely determined by the densities. The Hohenberg-Kohn theorem of these generalized density-functional theories is thus weaker than the original one. We give explicit examples and explore some consequences.Comment: revised version (typos corrected, some discussion added) to appear in Phys. Rev.

    An Integral Kernel for Weakly Pseudoconvex Domains

    Full text link
    A new explicit construction of Cauchy-Fantappi\'e kernels is introduced for an arbitrary weakly pseudoconvex domain with smooth boundary. While not holomorphic in the parameter, the new kernel reflects the complex geometry and the Levi form of the boundary. Some estimates are obtained for the corresponding integral operator, which provide evidence that this kernel and related constructions give useful new tools for complex analysis on this general class of domains

    Evidence of breakdown of the spin symmetry in diluted 2D electron gases

    Full text link
    Recent claims of an experimental demonstration of spontaneous spin polarisation in dilute electron gases \cite{young99} revived long standing theoretical discussions \cite{ceper99,bloch}. In two dimensions, the stabilisation of a ferromagnetic fluid might be hindered by the occurrence of the metal-insulator transition at low densities \cite{abra79}. To circumvent localisation in the two-dimensional electron gas (2DEG) we investigated the low populated second electron subband, where the disorder potential is mainly screened by the high density of the first subband. This letter reports on the breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of the exchange and correlation terms of the Coulomb interaction, as determined from the energies of the collective charge and spin excitations. Inelastic light scattering experiments and calculations within the time-dependent local spin-density approximation give strong evidence for the existence of a ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals

    Get PDF
    The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total and exchange-correlation energy functionals to the extent needed in applications of DFT to atomic, molecular and solid-state physics and quantum chemistry. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems

    Electron Localization in the Insulating State

    Full text link
    The insulating state of matter is characterized by the excitation spectrum, but also by qualitative features of the electronic ground state. The insulating ground wavefunction in fact: (i) sustains macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept, and we show how the two basic features stem from essentially the same formalism. Our approach to localization is exemplified by means of a two--band Hubbard model in one dimension. In the noninteracting limit the wavefunction localization is measured by the spread of the Wannier orbitals.Comment: 5 pages including 3 figures, submitted to PR

    Nuclear magnetic resonance spectrum of 31P donors in silicon quantum computer

    Get PDF
    The influence of the electric field created by a gate potential of the silicon quantum computer on the hyperfine interaction constant (HIC) is obtained. The errors due to technological inaccuracy of location of donor atoms under a gate are evaluated. The energy spectra of electron-nuclear spin system of two interacting donor atoms with various values of HIC are calculated. The presence of two pairs of anticrossing levels in the ground electronic state is shown. Parameters of the structure at which errors rate can be greatly minimized are found.Comment: 12 pages,, 3 figure

    Center of mass and relative motion in time dependent density functional theory

    Full text link
    It is shown that the exchange-correlation part of the action functional Axc[ρ(r,t)]A_{xc}[\rho (\vec r,t)] in time-dependent density functional theory , where ρ(r,t)\rho (\vec r,t) is the time-dependent density, is invariant under the transformation to an accelerated frame of reference ρ(r,t)ρ(r,t)=ρ(r+x(t),t)\rho (\vec r,t) \to \rho ' (\vec r,t) = \rho (\vec r + \vec x (t),t), where x(t)\vec x (t) is an arbitrary function of time. This invariance implies that the exchange-correlation potential in the Kohn-Sham equation transforms in the following manner: Vxc[ρ;r,t]=Vxc[ρ;r+x(t),t]V_{xc}[\rho '; \vec r, t] = V_{xc}[\rho; \vec r + \vec x (t),t]. Some of the approximate formulas that have been proposed for VxcV_{xc} satisfy this exact transformation property, others do not. Those which transform in the correct manner automatically satisfy the ``harmonic potential theorem", i.e. the separation of the center of mass motion for a system of interacting particles in the presence of a harmonic external potential. A general method to generate functionals which possess the correct symmetry is proposed

    Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    Get PDF
    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability mu_a [H(omega) oriented within the hexagonal plane] below the Neel temperature T_N. This excitation softens from 41 to 32 cm-1 on heating and finally disappears above T_N. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity epsilon_c within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases on heating towards room temperature thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons; however, their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon- paramagnon differential absorption processes. The latter is enabled by a strong short-range in-plane spin correlations in the paramagnetic phase.Comment: subm. to PR

    Finite Size Analysis of Luttinger Liquids with a source of 2k_f Scattering

    Full text link
    Numerical analysis of the spectrum of large finite size Luttinger liquids (g<1) in the presence of a single source of 2k_f scattering has been made possible thanks to an effective integration of high degrees of freedom. Presence of irrelevant operators and their manifestation in transport are issues treated independently. We confirm the existence of two irrelevant operators: particle hopping and charge oscillations, with regions of dominance separated by g=1/2. Temperature dependence of conductance is shown to be dominated by hopping alone. Frequency dependence is affected by both irrelevant operators.Comment: 4 pages, LaTex (RevTex), 3 PostScript figures appende
    corecore