The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of
quantum mechanics, and constitutes the basis for the very successful
density-functional approach to inhomogeneous interacting many-particle systems.
Here we show that in formulations of density-functional theory (DFT) that
employ more than one density variable, applied to systems with a degenerate
ground state, there is a subtle loophole in the HK theorem, as all mappings
between densities, wave functions and potentials can break down. Two weaker
theorems which we prove here, the joint-degeneracy theorem and the
internal-energy theorem, restore the internal, total and exchange-correlation
energy functionals to the extent needed in applications of DFT to atomic,
molecular and solid-state physics and quantum chemistry. The joint-degeneracy
theorem constrains the nature of possible degeneracies in general many-body
systems