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Degenerate ground states and nonunique potentials:
Breakdown and restoration of density functionals
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The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and
constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-
particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than
one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK
theorem, as all mappings between densities, wave functions, and potentials can break down. Two weaker
theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the
internal, total, and exchange-correlation energy functionals to the extent needed in applications of DFT to
atoms, molecules, and solids. The joint-degeneracy theorem constrains the nature of possible degeneracies in

general many-body systems.
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INTRODUCTION

Quantum mechanics is based on the assumption that all
information that one can, in principle, extract from a system
in a pure state at zero temperature is contained in its wave
function. In nonrelativistic quantum mechanics the wave
function obeys Schrddinger’s equation [1] which implies a
powerful variational principle according to which the
ground-state wave function minimizes the expectation value
of the Hamiltonian. This variational principle was used by
Hohenberg and Kohn (HK) [2] to show that the entire infor-
mation contained in the wave function is also contained in
the system’s ground-state particle density n(r).

HK established the existence of two mappings,

1 2
v(r)oW(ry, ...,ry)=n(r), (1)

where the first guarantees that the single-particle potential is
a unique functional of the wave function, v[¥], and the sec-
ond implies that the ground-state wave function is a unique
functional of the ground-state density, W[n]. Taken together,
both mappings are encapsulated in the single statement that
the single-particle potential is a unique density functional
v[n]. In this formulation, the HK theorem forms the basis of
the spectacularly successful approach to many-body physics,
electronic-structure theory, and quantum chemistry that be-
came known as density-functional theory (DFT) [3-5].

Mapping 2 was originally proven by contradiction [2] and
later by constrained search [6]. Note that, in spite of occa-
sional statements to the contrary in the literature, neither
proof directly proves the combined mapping, and thus the
existence of the functional v[n]. This requires additionally
mapping 1, which in the case of density-only DFT is proven
by inverting Schrédinger’s equation [4,7]
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In multidensity DFTs there is more than one density and
conjugate potential, and the above inversion does not
uniquely determine all potentials.

According to the preceding equation, any eigenstate W,
determines the single-particle potential v(r) up to an additive
constant, the corresponding eigenenergy [8]. The ground-
state version of this equation is all one needs to prove map-
ping 1, and thus of the combined mapping n(r)=uv(r)
+const, which we write as v=v[n]. The constant can always
be absorbed in the definition of the zero of energy, but in
open systems the resulting nonuniqueness of the mapping
v[n] gives rise to derivative discontinuities [9] that crucially
contribute to observables such as the band gap, chemical
hardness, electron affinities, electron transfer energies,
among others.

The two classic proofs of the HK theorem, by contradic-
tion and by constrained search, have been extended to a wide
variety of systems, including spin magnetization [in spin-
density-functional theory (SDFT) [10,11]] and orbital cur-
rents [in current-density-functional theory (CDFT) [12]],
among others. Further scrutiny, however, has led to the dis-
covery of situations in which each of the two mappings
breaks down.

V=2 o(r) = E (2)

BREAKDOWN OF MAPPINGS: DEGENERACY

Mapping 2, W[n], breaks down in the presence of degen-
erate ground states, where neither the constrained search
proof nor the proof by contradiction provide a unique wave
function among the degenerate manifold, because the strict
inequality of the underlying variational principle is replaced
by the weaker relation less-or-equal. In the proof by contra-
diction, the contradiction simply does not follow unless one
has a strict inequality, and in the proof by constrained search
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FIG. 1. (Color online) Schematic illustration of the breakdown
of mappings in the presence of degeneracy (full lines) and the ad-
ditional complication posed by nonuniqueness (red/dashed lines).
Large ovals are sets of functions, medium-size ovals collect degen-
erate wave functions, and small ovals enclose degenerate wave
functions that give rise to the same density. (v and n are used
generically to represent sets of conjugate potentials and densities.)

there is no guarantee that the search delivers only one wave
function for a specified density.

What remains from the proofs is that the ground-state
density uniquely determines a manifold of degenerate states,
{W}[n], but not all of these states individually [13]. Any
member of this manifold, however, still uniquely determines
the potential, since any of them can be used in Eq. (2).
Hence, even in the presence of degeneracy, the mapping
v[W,], and thus v[n], still exists. This situation is illustrated
in Fig. 1.

To proceed from establishing mappings to a practical
density-functional theory, one must define the total-energy
functional E,[n], the universal internal-energy functional
F[n], and the exchange-correlation energy functional E, [n].
The Kohn-Sham formulation additionally requires the nonin-
teracting Kinetic-energy functional T,[n]. 21 years after prov-
ing the original HK theorem, Kohn [14] showed how these
functionals can be defined even if degeneracy renders the
original proof ineffective [4]. Since all degenerate wave
functions by definition yield the same ground-state energy E,
one can directly define the functional

Fln]:==E- f &ra(r)v[n](r) =E - V[n]. (3)

Conventionally, this functional is defined as F[n]=T[n]
+U[n], but the information that the kinetic energy T and
interaction energy U are density functionals is only available
if the second mapping, W[n], holds, and cannot be taken for
granted in the presence of degeneracy. By contrast, the alter-
native definition above only requires the mapping v[n] to
establish the existence of the universal internal-energy func-
tional F[n].

Thus tamed, degeneracy actually becomes helpful in fur-
ther strengthening the foundations of DFT: on a lattice, any
density can be written as a linear combination of densities
arising from ensembles of degenerate ground states of a local
potential, thus solving the discretized v-representability
problem [15].
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BREAKDOWN OF MAPPINGS: NONUNIQUENESS

Mapping 1, v[W], breaks down if finite basis sets are used
to represent the wave functions. Harriman [16] gives both
general arguments and an explicit example illustrating this
breakdown, which is the only one occuring already in the
charge-density-only formulation of DFT.

In multidensity DFTs, such as SDFT and CDFT, the map-
ping between the set of effective potentials and the set of
ground-state densities can break down even in the complete
basis-set limit, because inversion of Schrodinger’s equation
does not establish a unique relation between the set of den-
sities and the set of conjugate potentials. This is the so-called
nonuniqueness problem of SDFT (and CDFT and others).
Following an early observation of the problem by von Barth
and Hedin [10] the problem has been shown to be fundamen-
tal and pervasive in recent work by Eschrig and Pickett [17]
and by two of the authors [18], who provided explicit ex-
amples of different SDFT potentials sharing the same
ground-state wave function. Reference [18] proposed a clas-
sification of nonuniqueness into systematic (arising from the
existence of certain constants of motion) and accidental (aris-
ing from special features of the ground state). In both cases,
the nonuniqueness is associated with the external potential.
Since the mapping W[#n] remains intact, and internal-energy
functionals can be defined exclusively in terms of wave func-
tions,

Fln] = (¥[n]|T+ U[¥[n]), (4)

the functionals E,[n]=F[n]+V[n], T,[n]=(®[n]|T|®[n]),
and E, [n]=F[n]-Egy[n]-TJn] still exist. Here & stands for
a Slater determinant, and ¥ for a general many-body wave
function. For notational simplicity we will in the remainder
of this paper use v and n generically to represent sets of
conjugate potentials and densities (e.g., vy,v| and ny,n, in
collinear SDFT).

Additional examples of both systematic and accidental
nonuniqueness were found in CDFT [19] and in SDFT on a
lattice [20]. The extent to which nonuniqueness of the poten-
tials affects various types of applications of multidensity
DFTs, as well as possible remedies, are discussed in Refs.
[19-21].

BREAKDOWN OF MAPPINGS: NONUNIQUENESS
AND DEGENERACY

We have just seen that in the presence of nonuniqueness
the mapping v[W] breaks down, whereas in the presence of
degeneracy the mapping W[n] breaks down. Interestingly, a
crucial fact has been overlooked in the standard analysis of
either degeneracy or nonuniqueness: These complications
can occur simultaneously. If a system with a degenerate
ground state is treated with SDFT or any other formulation
of DFT suffering from a nonuniqueness problem, none of the
mappings hold: Degenerate ground states can produce the
same density and arise from different external potentials. Un-
der these circumstances, no conventional HK theorem exists.
In fact, it is W[x] that is used to define F[n] in the absence of
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v[¥] (nonuniqueness), while v[W] guarantees the existence
of F[n] in the absence of W[n] (degeneracy). If both W[n]
and v[WV] break down, it seems that nothing is left. The
breakdown of both mappings is illustrated in Fig. 1. Three
simple examples are given below.

Our first example extends the case of the noninteracting
Li atom [13] to collinear SDFT. If the spin degree of freedom
is included, each of the four degenerate states [13] is addi-
tionally twofold degenerate with respect to S,. The set of
external potentials B=0, v=3/r thus has an eightfold degen-
erate ground-state manifold. The Slater determinants formed
from the configurations 1s”2p*| and 1s?2p~| have the same
charge and spin densities. Again, we see that in the presence
of a degenerate ground state the densities do not uniquely
determine the wave function. Differently from above, in
SDFT we can now also consider the alternative set of exter-
nal potentials B’ =const # 0, v=3/r. The spin-only magnetic
field B appears only in the Zeeman term, and simply splits
the ground-state manifold into two, one comprising of the
four spin-up configurations, the other of the four spin-down
configurations. The new ground state will be in the spin-
down manifold, where the configurations 1s22p+l and
15%2p~| remain and still yield the same densities. From the
point of view of the mapping between densities and poten-
tials, this is simply the well-known [17-21] nonuniqueness
of the potentials of SDFT with respect to a weak collinear
magnetic field. The full situation, however, is now one in
which the densities do not determine the wave functions but
only a (ground-state) manifold of them, and some members
of these manifolds are ground states in more than one set of
external potentials. The functionals W[n], V[W¥], and V[n]
thus do not exist.

Consider next an interacting atom in an S=1, L=1 state.
Concrete examples are °C and '*Si (with term 3PO) and %0
and 'S (with term *P,). In the set of external potentials B
=0, v=Z/r the ground state of such systems is (2L+1)(2S
+1)=ninefold degenerate. Let us denote the members of this
manifold as W, . Several of these, such as ¥, ; and W_, ,
have the same charge and spin densities. Hence, we have
another situation in which these densities do not determine
the wave functions but only the manifold. Now consider the
same system in external potentials B'=const#0 and v
=Z/r. The states ¥, ¥, , and ¥_; | remain degenerate
ground states in this new set of potentials, and the density
and spin density of the first and the last are still the same as
for B’=0. Hence, as in other examples of nonuniqueness,
knowledge of this state alone does not determine the external
potentials. Upon combining both observations we find that to
a given set of ground-state densities (n,m) there may corre-
spond more than one degenerate wave function (all in local
external potentials B=0, v=Z/r), and all of these wave func-
tions are also degenerate ground states of the different set of
local external potentials (B’ ,v). Again, the functionals W[n],
V[W], and V[n] do not exist.

Last, we discuss a modification of the one-electron ex-
ample by von Barth and Hedin [10]. Consider a single elec-
tron in the presence of an external four-potential w,4(r)
=V(r) 8,5~ [B(r)-7],p where 7 is the vector of Pauli matri-
ces. Let w,g(r) be uniform along one spatial direction (say,
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FIG. 2. (Color online) The joint-degeneracy theorem states that
two degenerate ground states with equal density in a potential V;
can also be ground states of a second potential V,, but only as a
degenerate pair. Case I, in which one of the two states is a ground
state of V, but the other is not, is excluded by the theorem.

x), with periodic boundary conditions along that direction
separated by a distance L (which is topologically equivalent
to confining the electron on a ring). The twofold degenerate
ground state of the Hamiltonian Haﬁ=—%5aﬁ+waﬁ(r) is
given by Vi(r)=e**y,(y,z), k=2m/L, with both ground
states producing the same density. Furthermore, both ground
states W(r) are invariant under perturbations w!’w(r)
=V'(r){8,5—[m(r)-/n(r)],g}, where n(r) and m(r) are the
ground-state density and magnetization, and V'(r) is an ar-
bitrary (but not too large, in order to avoid level crossings
[18]) scalar potential function. Thus, we have found another
case where both mappings (1) break down.

RESTORATION OF ENERGY FUNCTIONALS

The question then arises whether the energy functionals
E,[n], F[n], T{n], and E, [n] can still be defined, even in the
absence of all mappings that are conventionally considered
in the content of the HK theorem. To answer affirmatively,
we consider two distinct cases, represented in Fig. 2. In case
I, ¥, and V¥, which both produce density 7, are degenerate
ground states in potentials V| and V,. In case II only V¥, is a
common ground state of both potentials, whereas ¥, is a
ground state only of V|, but either an excited state or not
even an eigenstate at all in V,. We first prove that case II
cannot occur. In potential V|, we define the internal energy
(not yet a functional of any density) as

F1=E1—fd3rvl(l‘)n(l'). (5)
In potential V,, ¥, and V¥, are degenerate, so that E,

=(V |T+U+V |, )=(¥,|T+U+V,|¥,). Since both also

produce the same density, the expectation value of \71 with
WV, and W, is the same, so that

(W |T+ 0%,y =(W,|T+UW,)=F, (6)

is independent of the choice of wave function. Next, apply-
ing the variational principle to the Hamiltonian of system 2,
we have

(W |T+U+V,|¥,)>E,, (7)

with a strict inequality, as by assumption ¥, in potential 2 is
not degenerate with the ground state of that system. From
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Eq. (6), and again making use of the fact that ¥, and V¥,
produce the same density, we can write this as

<qu|f+ lA]+ ‘/‘/2|\I’b> = E2 > Ez. (8)

The contradiction proves that case II cannot occur. This re-
sult is completely general, and implies the following theo-
rem: Consider two degenerate ground-state wave functions
in potential V,, ¥, and W,. The constraint that these two
wave functions have the same density guarantees that in any
other potential V, either both are ground states (and thus also
degenerate) or none of them is. We call this the joint-
degeneracy theorem. Note that all of our explicit examples
above respect the joint-degeneracy theorem. Here, we use
this theorem to prove the existence of the energy functionals
of DFT even in situations in which all three standard map-
pings, W[n], V[n], and V[V], break down. However, we
stress that the theorem is valid beyond DFT, and quite gen-
erally constrains the nature of possible degeneracies in
many-body systems.

Even though one could formally define an F[n] functional
in case II, we have just shown that this case cannot occur, so
we only need to establish the existence of F[n] in case 1. In
analogy to Eq. (5), we define in potential V,

Fy=E,— f d*ro,(r)n(r). 9)

Since ¥, and W, are degenerate also in potential V,, we have
Ey=(W|T+ U+ V| W y=(W,|T+U+V,|¥,), resulting in

Fy=(W,|T+ U|W,)=(V,|T+ U|W¥,), (10)

where we again used that W, and ¥, yield the same density.
This is the same equation obtained above for F'|. Again, this
result is completely general, implying the following theorem:
Regardless of any possible degeneracy or nonuniqueness,
two systems with the same ground-state density have the
same internal energy F. Hence, the functional F[n] exists and
is universal, i.e., independent of the potentials. This internal-
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energy theorem is consistent with the constrained-search for-
mulation of DFT [6], which defines F[n]:= minq,Hn(\I’ﬁ"

+U|‘I’), although in the presence of degeneracy this defini-
tion cannot be used to define W[n].

Since the noninteracting kinetic energy 7 is the internal
energy of the Kohn-Sham system, it is also a well-defined
density functional, and E, [n]=F[n]-Ey[n]-T|n] can be
constructed as usual. Finally, for a given external potential,
the functional E,[n] then obviously also exists.

CONCLUSIONS

We have shown both by general arguments and by spe-
cific examples that in the case of degeneracy in multidensity
DFTs all three mappings, W[n], V[ ¢], and V[n], and thus the
entire body of information usually considered in the content
of the HK theorem, break down. The weaker joint-
degeneracy and internal-energy theorems, however, still al-
low the definition of the internal-energy functional F[n], and
thus also of the functionals T [n], E,[n], and E,[n]. How-
ever, we stress that we have only proven existence of the
functionals, not their differentiability. In fact, in open sys-
tems all these functionals are expected to display derivative
discontinuities. Ensemble DFT is the proper framework for
addressing these questions, but we note that multidensity en-
semble DFT itself is subject to the same kind of questions we
here ask for multidensity pure-state DFT. In particular,
uniqueness of the external potentials cannot be taken for
granted.
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