379 research outputs found

    The effect of longitudinal sleep monitoring on clinician agreement in obstructive sleep apnea diagnosis: The ELSA study

    Full text link
    There is strong evidence for clinically relevant night‐to‐night variability of respiratory events in patients with suspected obstructive sleep apnea. Sleep experts retrospectively evaluated diagnostic data in 56 patients with suspected obstructive sleep apnea. Experts were blinded to the fact that they were diagnosing the same case twice, once based on a short report of a single in‐laboratory respiratory polygraphy and once with the additional information of 14 nights of pulse oximetry at home. All experts (n = 22) were highly qualified, 13 experts (59.1%) treated > 100 patients with suspected obstructive sleep apnea per year. In 12 patients, the apnea–hypopnea index in the respiratory polygraphy was  100 per year compared with 0–29 patients per year (Coef. [95% confidence interval] −0.63 [−1.22/−0.04] and −0.61 [−1.07/−0.15], respectively). Experts found already a high level of consensus regarding obstructive sleep apnea diagnosis, severity and continuous positive airway pressure recommendation after a single respiratory polygraphy. However, longitudinal sleep monitoring could help increase consensus in selected patients with diagnostic uncertainty

    Physiological consequences of CPAP therapy withdrawal in patients with obstructive sleep apnoea-an opportunity for an efficient experimental model

    Full text link
    Randomised controlled trials (RCTs) of continuous positive airway pressure (CPAP) in obstructive sleep apnoea (OSA) are time consuming, and their findings often inconclusive or limited due to suboptimal CPAP adherence in CPAP-naĂŻve patients with OSA. Short-term CPAP withdrawal in patients with prior optimal CPAP adherence results in recurrence of OSA and its consequences. Thus, this experimental model serves as an efficient tool to investigate both the consequences of untreated OSA, and potential treatment alternatives to CPAP. The CPAP withdrawal protocol has been thoroughly validated, and applied in several RCTs focusing on cardiovascular and metabolic consequences of untreated OSA, as well as the assessment of treatment alternatives to CPAP

    Endocrine responses during CPAP withdrawal in obstructive sleep apnoea: data from two randomised controlled trials

    Get PDF
    The aim of this investigation was to elucidate the effect of CPAP withdrawal on neurometabolic and cardiometabolic markers in patients with obstructive sleep apnoea. We evaluated 70 patients (mean age 61 +/- 10 years, 82% men) treated with CPAP in two 2-week, parallel, randomised controlled trials. CPAP withdrawal resulted in elevated 3,4-dihydroxyphenylglycol, norepinephrine and cortisol after 2 weeks of CPAP withdrawal;however, no statistically significant changes of the renin-angiotensin-aldosterone system (RAAS) determinants were documented. In summary, CPAP withdrawal may be more prominently linked to short-term increases in sympathetic activation than hypothalamic-pituitary-adrenal axis or RAAS activation. ClinicalTrials.gov Identifier: NCT02493673 and NCT02050425

    Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel Piezo-1+ population of circulating CD11b+/CD115+ monocytes

    Get PDF
    Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long-term stabilization of newly induced vessels remains a challenge. It has been shown that fibroblasts and mesenchymal stem cells can stabilize newly induced vessels. However, whether an injected biomaterial alone can serve as an instructive environment for angiogenesis remains to be elucidated. It is reported here that appropriate vascular branching, and long-term stabilization can be promoted simply by implanting a hydrogel with stiffness matching that of fibrin clot. A unique subpopulation of circulating CD11b+ myeloid and CD11b+ /CD115+ monocytes that express the stretch activated cation channel Piezo-1, which is enriched prominently in the clot-like hydrogel, is identified. These findings offer evidence for a mechanobiology paradigm in angiogenesis involving an interplay between mechanosensitive circulating cells and mechanics of tissue microenvironment

    Severe Obstructive Sleep Apnea Disrupts Vigilance-State-Dependent Metabolism

    Full text link
    The direct pathophysiological effects of obstructive sleep apnea (OSA) have been well described. However, the systemic and metabolic consequences of OSA are less well understood. The aim of this secondary analysis was to translate recent findings in healthy subjects on vigilance-state-dependent metabolism into the context of OSA patients and answer the question of how symptomatic OSA influences metabolism and whether these changes might explain metabolic and cardiovascular consequences of OSA. Patients with suspected OSA were assigned according to their oxygen desaturation index (ODI) and Epworth Sleepiness Scale (ESS) score into symptomatic OSA and controls. Vigilance-state-dependent breath metabolites assessed by high-resolution mass spectrometry were used to test for a difference in both groups. In total, 44 patients were eligible, of whom 18 (40.9%) were assigned to the symptomatic OSA group. Symptomatic OSA patients with a median [25%, 75% quartiles] ODI of 40.5 [35.0, 58.8] events/h and an ESS of 14.0 [11.2, 15.8] showed moderate to strong evidence for differences in 18 vigilance-state-dependent breath compounds compared to controls. These identified metabolites are part of major metabolic pathways in carbohydrate, amino acid, and lipid metabolism. Thus, beyond hypoxia per se, we hypothesize that disturbed sleep in OSA patients persists as disturbed sleep-dependent metabolite levels during daytime

    Deciphering the human antibody response against Burkholderia pseudomallei during melioidosis using a comprehensive immunoproteome approach

    Get PDF
    IntroductionThe environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients.Methods and resultsIn this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio.ConclusionOur study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis

    Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration

    Full text link
    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 ”g L(-1) MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified

    The molecular hallmarks of primary and secondary vitreoretinal lymphoma

    Get PDF
    Vitreoretinal lymphoma (VRL) is a rare subtype of diffuse large B-cell lymphoma (DLBCL) considered a variant of primary central nervous system lymphoma (PCNSL). The diagnosis of VRL requires examination of vitreous fluid, but cytologic differentiation from uveitis remains difficult. Because of its rarity and the difficulty in obtaining diagnostic material, little is known about the genetic profile of VRL. The purpose of our study was to investigate the mutational profile of a large series of primary and secondary VRL. Targeted next-generation sequencing using a custom panel containing the most frequent mutations in PCNSL was performed on 34 vitrectomy samples from 31 patients with VRL and negative controls with uveitis. In a subset of cases, genome-wide copy number alterations (CNAs) were assessed using the OncoScan platform. Mutations in MYD88 (74%), PIM1 (71%), CD79B (55%), IGLL5 (52%), TBL1XR1 (48%), ETV6 (45%), and 9p21/CDKN2A deletions (75%) were the most common alterations, with similar frequencies in primary (n = 16), synchronous (n = 3), or secondary (n = 12) VRL. This mutational spectrum is similar to MYD88mut/CD79Bmut (MCD or cluster 5) DLBCL with activation of Toll-like and B-cell receptor pathways and CDKN2A loss, confirming their close relationship. OncoScan analysis demonstrated a high number of CNAs (mean 18.6 per case). Negative controls lacked mutations or CNAs. Using cell-free DNA of vitreous fluid supernatant, mutations present in cellular DNA were reliably detected in all cases examined. Mutational analysis is a highly sensitive and specific tool for the diagnosis of VRL and can also be applied successfully to cell-free DNA derived from the vitreous

    Increased Bone Marrow Interleukin-7 (IL-7)/IL-7R Levels but Reduced IL-7 Responsiveness in HIV-Positive Patients Lacking CD4+ Gain on Antiviral Therapy

    Get PDF
    Background: The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Ra in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ #200/ml) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA#50), 12 complete failures (CFs; HIV-RNA.1000), and 23 HIVseronegative subjects. Methods: We studied plasma IL-7 levels, IL-7Ra+CD4+/CD8+ T-cell proportions, IL-7Ra mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Ra mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells. Results: Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Ra CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Ra mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04). Conclusions: Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Ra expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor
    • 

    corecore