67 research outputs found

    Voicing assimilation in whispered speech

    Get PDF
    A large body of literature has shown that phonemic voicing contrasts are preserved in the production and perception of whispered speech. Nevertheless, it is unclear to what extent allophonic voicing is also maintained in whisper. The present study investigates whether a non-contrastive voicing distinction in Spanish fricatives - which results from voice assimilation in obstruent clusters - is also acoustically cued in whispered speech. In order to test this, a production experiment was conducted with 11 speakers of Peninsular Spanish. A number of acoustic cues relating to the fricatives in question and their surrounding phonological environment were measured. Four cues were found to be affected by voicing assimilation in normal phonation. Crucially, one cue (preceding vowel duration) was found to be affected by voicing assimilation in both normal and whispered phonation. These results show that non-contrastive voicing distinctions are also maintained in whispered speech.caslpub3949pub101

    Local electrical imaging of tetragonal domains and field-induced ferroelectric twin walls in conducting SrTiO3

    Get PDF
    This work is supported by the National University of Singapore (NUS) Academic Research Fund (AcRF Tier 1 Grants No. R-144-000-346-112 and No. R-144-000-364-112) and the Singapore National Research Foundation (NRF) under the Competitive Research Programs (CRP Awards No. NRF-CRP 8-2011-06 and No. NRF-CRP10-2012-02) by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, Grant No. ZUK 63), and by the EU-FP6-COST Grant No. MP1308.We demonstrate electrical mapping of tetragonal domains and electric field-induced twin walls in SrTiO3 as a function of temperature and gate bias utilizing the conducting LaAlO3/SrTiO3 interface and low-temperature scanning electron microscopy. Conducting twin walls appear below 105 K, and new twin patterns are observed after thermal cycling through the transition or on electric field gating. The nature of the twin walls is confirmed by calculating their intersection angles for different substrate orientations. Numerous walls formed when a large side- or back-gate voltage is applied are identified as field-induced ferroelectric twin walls in the paraelectric tetragonal matrix. The walls persist after switching off the electric field and on thermal cycling below 105 K. These observations point to a new type of ferroelectric functionality in SrTiO3, which could be exploited together with magnetism and superconductivity in a multifunctional context.Publisher PDFPeer reviewe

    Vascular grading of angiogenesis: prognostic significance in breast cancer

    Get PDF
    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11 years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers was moderately reproduced (κ = 0.59). Vascular grade was significantly associated with axillary node involvement, tumour size, malignancy grade, oestrogen receptor status and histological type. In univariate analyses vascular grade significantly predicted recurrence free survival and overall survival for all patients (P< 0.0001), node-negative patients (P< 0.0001) and node-positive patients (P< 0.0001). Cox multivariate regression analysis showed that vascular grading contributed with independent prognostic value in all patients (P< 0.0001). A prognostic index including the vascular grade had clinical impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer. © 2000 Cancer Research Campaig

    Automatic Multi-organ Segmentation Using Learning-Based Segmentation and Level Set Optimization

    Full text link
    Abstract. We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspon-dences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10–100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17–2.89mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40 % increase in accuracy.

    Transport efficiency in topologically disordered networks with environmentally induced diffusion

    Full text link
    We study transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing to study the crossover between coherent transport and purely classical diffusion. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer).Comment: 10 pages, 7 figure

    A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot

    Full text link
    A quantum-light source that delivers photons with a high brightness and a high degree of entanglement is fundamental for the development of efficient entanglement-based quantum-key distribution systems. Among all possible candidates, epitaxial quantum dots are currently emerging as one of the brightest sources of highly entangled photons. However, the optimization of both brightness and entanglement currently requires different technologies that are difficult to combine in a scalable manner. In this work, we overcome this challenge by developing a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator. The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with fidelities up to 0.96(1). This hybrid technology has the potential to overcome the limitations of the key rates that plague current approaches to entanglement-based quantum key distribution and entanglement-based quantum networks. Introductio
    • …
    corecore