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We demonstrate electrical mapping of tetragonal domains and electric field-induced twin walls in
SrTiO; as a function of temperature and gate bias utilizing the conducting LaAlO; /SrTiOj; interface and
low-temperature scanning electron microscopy. Conducting twin walls appear below 105 K, and new twin
patterns are observed after thermal cycling through the transition or on electric field gating. The nature of
the twin walls is confirmed by calculating their intersection angles for different substrate orientations.
Numerous walls formed when a large side- or back-gate voltage is applied are identified as field-induced
ferroelectric twin walls in the paraelectric tetragonal matrix. The walls persist after switching off the electric
field and on thermal cycling below 105 K. These observations point to a new type of ferroelectric
functionality in SrTiO5, which could be exploited together with magnetism and superconductivity in a

multifunctional context.
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The emerging field of domain boundary engineering
requires interfaces with unique functionalities [1] such as in
the SrTiO; (STO)-based heterostructures [2-5]. STO is
cubic at room temperature, but undergoes a ferroelastic
transition to tetragonal structure at around 105 K. It does
not become spontaneously ferroelectric at low temperatures
despite its huge permittivity [6,7]. Nevertheless, electric
order can be induced by stress, or by electric field (E)
[8-10] at a threshold of 1.40 kV/cm at ~5 K.

When STO is used as a substrate or gate insulator for
materials such as topological insulators and superconduc-
tors [11,12], films grown on STO are assumed to be biased
uniformly. However, this is not really the case as nonun-
iformity can arise from the tetragonal domain structure.
Twin boundaries between domains (twin walls) in STO are
of particular interest, as they have been suggested to
become conducting and ferroelectric at low temperatures
[13—19]. Further, it has been demonstrated that ferroelectric
“stripes” can be injected in ferroelectric thin films by
increasing the applied voltage [20,21], which requires the
material, or at least its domain walls, to be ferroelectric.
Here, we image the ferroelastic twin walls in STO, and
show that their response above the threshold field is strong
evidence that it is the field-induced twin walls that become
ferroelectric.

STO can be made conducting by doping, by oxygen
vacancies, or by electronic reconstruction induced by a
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polar oxide LaAlO; (LAO) that produces a few nanometers
of two-dimensional electron gas (2DEG) below the inter-
face [22-24], while the bulk of the STO remains insulating.
Recently, an influence of the local tetragonal domain
structure on the conductivity of the 2DEG at the LAO/
STO interface was demonstrated by probing the magnetic
field [25] or electric potential [26] induced by the 2DEG,
rather than mapping the electronic properties directly,
which is difficult with a probe such as scanning tunneling
microscopy because the 2DEG is embedded between two
insulating oxides. A method that can map the local electric
transport properties right at the interface is low-temperature
scanning electron microscopy (LTSEM) [27-31], which
uses a periodically blanked focused electron beam (e beam)
scanned across the sample [29-31]. It locally perturbs its
electric conductivity with micron-scale spatial resolution
and induces a voltage signal AV across the sample. The
signal AV gives access to the electronic properties of the
2DEG directly.

In our experiments (see Supplemental Material [32]), the
2DEG microbridges are obtained by growing and pattern-
ing a thin LAO film on an STO substrate, with either (001)
or (110) orientation. The orientation of the microbridges is
described in Table I. LTSEM is utilized to obtain micron-
scale maps of the e-beam-induced AV across the micro-
bridges, imaging the twin walls via an enhanced contrast
due to the beam-induced perturbation of the local
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TABLE L.

Summary of device characteristics used in this study, listing LAO thicknesses and the (expected and observed) intersection

angles of twin walls in the plane of the substrate surface with respect to the long direction of the microbridges. Note that the
microbridges of STO(001) samples are along either [100] or [010], which are not distinguished. For the STO(110) samples, “a”

represents microbridges along [001] and “b” along [110].

STO(001) STO(110)
Pattern angles (deg) Pattern angles (deg)
Sample LAO thickness (unit cell) Expected Observed Sample LAO thickness (unit cell)  Expected Observed
No. 1 5 0, 90, 45, 135 0, 90, 135 No. 5a 5 0, 55, 125 55, 125
No. 2 20 0, 90, 45, 135 0, 90 No. 5b 5 35,90, 145 35, 90, 145
No. 3 5 0, 90, 45, 135 0, 90, 135 No. 6a 10 0, 55, 125 55, 125
No. 4 10 0, 90, 45, 135 0,90, 45 No. 6b 10 35,90, 145 35, 90, 145

conductivity of the 2DEG. The experimental setup is
illustrated in Fig. 1, together with a backscattered electron
(BSE) surface image and a LTSEM AV map of the STO
(001) sample No. 1 at 5 K. Clear stripelike patterns around
1-2 yum wide (the spatial resolution of the instrument)
show up in the map, in contrast to the featureless BSE
image. Figure 2 shows the evolution of the LTSEM AV
maps with increasing temperature for the same sample. The
contrast decreases with increasing temperature, and it
disappears just above 105 K [Fig. 2(b)]. The persistent
wall signals above 105 K are attributed to a conducting
footprint of oxygen vacancies left after the wall has gone
[33]. In Fig. 2(c), which includes the leads, stripes that are
along either [100] or [010] are seen, which are associated
with twin walls in STO below the transition. The contrast of
the (bright) signals on the entire microbridge decreases
with increasing temperature, although the total resistance
R of the bridge and also its derivative dR/dT increase
with 7, indicating that the voltage signal is not due to
beam-induced local heating [27]. The voltage contrast due
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FIG. 1. (a) The measurement setup with an e beam scanning
across the surface of the LAO/STO sample. The e beam is
chopped by a beam blanker, while AV is detected using a lock-in
technique. (b) BSE and (c) LTSEM voltage image, measured at
5 K (I =100 pA) on the STO(001) sample No. 1. Clear stripes
show up in the voltage signal but not in the BSE signal. The
image is slightly tilted by an angle ¢, due to a thermal drift that is
corrected in the analysis of the LTSEM maps.

to the injected beam current flowing along the microbridge
can also be ruled out as the expected signals are 2 orders of
magnitude too small and should increase with R(T),
contrary to observation. We hence propose that the e beam
locally excites charge carriers (electrons and holes). A
fraction of those, with density An, diffuses to the 2DEG,
where they are separated in the applied bias field E =
V/L « I (bias current) and contribute to AV o« Anl. The
enhanced signals at twin walls can then be due both to their
enhanced intrinsic conductivity and to the enhanced gen-
eration of charge carriers at twin walls. We cannot separate
these two contributions.

A remarkable observation is the complex patterns of twin
walls that appear in both (001)- and (110)-oriented STO
samples, some of which are shown in Fig. 3. The twins are
denoted as X[100], Y[010], and Z[001], based on the ¢ axis
direction in the original cubic cell. A twin wall forms when
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FIG. 2. (a) Series of LTSEM voltage images (with I = 100 pA)
at increasing 7 for sample No. 1 on STO(001). The AV signal
disappears just above 105 K, and the maximum intensity AV ..
of the bright stripes is plotted versus temperature in (b). (c)
Voltage image observed at 5 K, including the electrodes.
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FIG. 3. LTSEM maps of different samples showing different
patterns of twin walls; (a) and (b) are for LAO/STO(001), and (c)
and (d) are for LAO/STO(110). (a) 0° (along [100]) and 90°
(along [010]) patterns in sample No. 1. (b) 0° (along [100]) and
45° (along [110]) patterns in sample No. 4. (c) 55° and 125°
patterns in sample No. 5a. (d) 55° and 125° patterns in sample
No. 6a. (e) Three kinds of tetragonal domains in STO, X, Y, and
Z, have their ¢ axis along [100], [010], and [001], respectively. (f)
A three-dimensional schematic of different twins and their walls
in a cubic coordinate system. (g) Cross section of twins in the
(110) plane. The angle of the twin wall between Z and X (Y) is
either 55° (125°) or 145° (35°) in the (110) plane. The twin wall
between X and Y intersects along [001] in the (110) plane.

adjacent domains share an a axis [26]. Although the ¢ axes
are always orthogonal, the twin boundaries can intersect at
different angles in the (001) or (110) plane of the STO
surface. The calculated angles and those observed in our
various samples are listed in Table I. In Figs. 3(a) and 3(b),
the twin walls are along [100], [010], or [110], which
correspond to angles of 0°, 90°, or 45°, respectively, in the
(001) plane. In Figs. 3(c) and 3(d), the twin walls make
angles close to 55°, 125°, or 145° [see Table I and Figs. 3(f)
and 3(g)]. In the (001) plane, X and Y form twin walls that
intersect at 45° to [010]; Y and Z intersect at 90°; Z and X
intersect at 0°, as shown in Fig. 3(f). In order to explain the
angles observed in the (110) plane, we calculated the
intersection between the twin wall and the substrate
orientation. In Fig. 3(g), we show that the angle of the
twin wall between Z and X (Y) is either 55° (125°) or 145°
(35°). The twin wall between X and Y has an intersection
along [001]. These are exactly what we observe and we
conclude that we are imaging the twin boundaries between
different tetragonal domains. Our results are consistent with
those in Ref. [25,26,34] and with recent results on optical
polarization microscopy [35] (also see Supplemental

Material [32]). Moreover, after thermal cycling to above
125 K, the spatial configuration of the stripe patterns in AV
images clearly changes, which supports our claim that we
are indeed imaging twin walls.

To investigate the response of the twin walls to electric
field, we apply E-fields to the samples using a side
[Fig. 4(a)] or back gate [Fig. 4(b)]. The distance to the
side-gate electrode is 165 um, and that to the back gate
electrode is 500 ym. The threshold of about 1.4 kV /cm for
the appearance of ferroelectricity in STO [9] therefore
corresponds to a side-gate voltage of 23 V or a back-gate
voltage of 70 V. Figure 4(c) shows a sequence of LTSEM
maps at different side-gate voltages from 0 to —200 V at
5 K. With a =200 V gate field, many narrow twin walls are
created, and they remain after switching off the gate
voltage, and even after thermal cycling to 80-100 K for
12 hours. Most of them disappear after thermal cycling to
300 K. Figure 4(d) shows LTSEM voltage maps at different
back-gate voltage from 0 to —210 V at 5 K. The results are
similar to those for the side gate. We also show that

(a) side gate

(b) Back gate

(N

after thermal cycling
T =100 K for 12 hours

FIG. 4. Schematics showing (a) the side- and (b) back-gate
configurations. (c) LTSEM AV images for different side-gate
voltages from 0 to —200 V at 5 K for (001) sample No. 1. (d)
LTSEM AV images for different back-gate voltages from 0 to
—210 V. (e,f) Schematics of electric field effect on the ferro-
electric state of the STO in the side- (e) and back-gate (f) case.
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applying a positive back-gate voltage does not erase the
twin walls. The number of twin walls induced with the
E-field is plotted in Fig. 5 for both side- (blue square) and
back-gate (red circles) configurations. The intercept at
1.4 — 1.5 kV/cm corresponds to the onset of field-induced
electric order in STO at 5 K, indicating that the E-field-
induced twin walls above the threshold are ferroelectric.
We do not, however, observe a ferroelectric hysteresis loop
when we reverse the gate voltage from —200 to 200 V for
either the side or back gate, possibly because the maximum
applied fields (~10 kV/cm) are rather small and do not
allow a full hysteresis loop scan [Figs. 4(e) and 4(f)]. As
AV [Fig. 2(b)] is monitored at constant current, the brighter
regions correspond to areas where either the conductance or
the beam-induced change of conductance is higher than
average. This we think occurs in the vicinity of conducting
twin walls [Figs. 1(c), 2(a) and 2(c), and 3(a)-3(d)]
[17,18,25]. However, when the walls become ferroelectri-
cally polarized, the situation is different, as shown in
Figs. 4(c) and 4(d). On either side of the wall there is a
dark band that seems to be insulating, like the surrounding
background outside the microbridge. It appears that the
2DEQG is depleted for some distance when the wall becomes
ferroelectric, forming a Schottky-like barrier.

Normally different segments of a polar wall may have
dipole moments pointing in different directions within the
plane, some along the direction of the apices of the TiOg
octahedra in the twin wall, and others in the opposite
direction forming polarizations, which can be stabilized by
an in-plane E-field [15]. The polarity of the domain walls is
enhanced by applying an E-field parallel to the plane of the
twin wall, which aligns the polar clusters within the twin
wall and induces ferroelectricity. It was reported that the
low-temperature heat capacity of STO under an E-field has
an additional contribution from excitations of unknown
origin that might be related to field-induced polarization
and ferroelectricity [9]. We interpret the bright lines in the
images of Fig. 4(c) and 4(d) as the twin walls, while the
dark yellow stripes are the domains between walls. Our
results suggest that the field-induced ferroelectricity in
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FIG. 5. The back- and side-gate field-induced wall numbers
versus the applied gate field. The fitted (dashed) line intersects
with the E-field axis at around 1.5 kV/cm, which is the onset of
the E-field-induced electric ordering in STO at 5 K.

STO occurs only within the walls, since the size of the
domains between twin walls does not increase when we
increase the gate voltage.

The twin walls do not entirely disappear on heating above
300 K and cooling back again to 5 K [Figs. 4(c) and 4(d)].
One would expect that on bringing the STO in the cubic
phase all twin walls should disappear, but the material seems
to surprisingly “remember” its twin-wall state, which
resembles very much that of the —20 V case in the side-
gate case after thermal cycling at 300 K. Since the walls are
conducting we think they become electrically charged
during the long exposure to voltage bias at 5 K
[17,18,25]. This charge is pinned and creates charged
sections at the position of the twin walls, then shows up
in similar positions on going below 105 K again. This
memory effect might be tied to inevitable defects in the
samples. When temperature decreases from above
the transition to below, the twin walls start to form at the
defects and then expand to other areas with decreasing
temperature. Since defects are now present, they can be more
easily charged by a bias current or electric field. Another
possible reason for the memory effect of ferroelastic or
ferroelectric twin walls is the persistence of a residual
electric field in STO after applying a large electric field [8].

The reason for the appearance of multiple ferroelectric
twin walls rather than a bulk ferroelectric state may be
understood by considering the depolarizing field E,,

eoEqy = (P) = —Ptn, (1)

where (P) is the average polarization, P is the electric
polarization of a twin wall, ¢ is the wall thickness, and 7 is
the number of walls per meter. When the polarization is
stable, the net field, £ + E,, is 0. The slope of Fig. 5 gives
E/n=—E;/n~6.0 V. Hence, Pt = 6.0 X ¢;. Assuming
an effective wall thickness of 1 nm, we deduce a polari-
zation of 0.05 Cm~2, which is a reasonable value for a
ferroelectric film. One can expect to produce twin walls by
applying an E-field to a material with polar ferroelastic
walls that need to balance the depolarization field created
by the charges associated with the ferroelectric sheet
[36,37]. They may also become electrically conducting
due to the charge injected into them from the gate [17].
Though a transition to an orthorhombic ferroelectric phase
of STO has been deduced from analysis of neutron
diffraction superlattice reflections under applied field or
strain [8], to the best of our knowledge, this is the first
observation in real space of E-field-induced ferroelectric
twin walls in a nonferroelectric bulk material.

Coupling of different order parameters opens the door
for a multitude of novel effects on the nanometer length
scale of the thickness of a twin wall [38]. Besides the
ferroelasticity below 105 K and field-induced electric
ordering at low temperature, STO has been shown to be
superconducting [4,5] below 300 mK and ferromagnetic
even at room temperature [3,39]. The conducting twin
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walls could play the role of electric wiring in multiferroic
domain wall devices. In future work, possible coupling
among these intriguing properties will have to be explored.

In conclusion, LTSEM has enabled us to image the
tetragonal twin walls in STO below 105 K by mapping the
local electric transport properties of the interfacial 2DEG.
Although the technique has only micron-scale spatial
resolution, it is sensitive to the presence of twin walls
and planar ferroelectric defects that are only about a
nanometer thick. We find that the E-field, beyond a critical
threshold, induces ferroelectricity within the twin walls in
STO, and creates an increasing density of them with
increasing field. These observations are relevant for the
low-temperature properties of a wide variety of complex
oxide heterostructures that are routinely built on STO and
are therefore sensitive to its structure and phase transitions.
Our work demonstrates the prospect of designing electronic
systems at the nanoscale (the thickness of a twin wall) by
making use of the ferroelectric twin walls in conducting
STO-based perovskite heterostructures.
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