69 research outputs found

    "Semantic primitives" und die Fertigkeit "Definieren" im Fremdsprachenunterricht

    Get PDF
    W niniejszym tekście, poświęconym definiowaniu m. in. słów i zwrotów frazeologicznych podczas nauczania języków, autorka opisuje lingwistyczną teorię Anny Wierzbickiej, dotyczącą Natural Semantic Metalanguage (NSM - Naturalna Semantyczna Metamowa) i w adaptacyjnej formie przenosi ją na płaszczyznę zajęć z języka obcego (w tym przypadku języka niemieckiego jako obcego), gdzie przynosi ona namacalne wyniki. Podczas zajęć językowych wymaga się od uczących się poprawnego definiowania ogólnego, które jednak rzadko przekazywane jest w podręcznikach i na wykładach, mimo iż zdolność ta nie jest wcale oczywista, samo definiowanie zaś nie jest łatwym zadaniem. Przeciwnie - od studentek i studentów języków obcych oczekuje się mentalnego uzdolnienia w tym kierunku, nie uwzględniając faktu, że wiele osób ma trudności z definiowaniem nawet w języku ojczystym. W artykule autorka chce pokazać, że po części zignorowana teoria Anny Wierzbickiej ze swoim punktem wyjściowym, jakim są primes (ułatwiające definiowanie znaczeń), pozwala uświadomić uczącym się języka obcego, że istotę słowa, wyrażenia czy frazy można wyjaśnić w oparciu o sposób określenia znaczenia, przyjęty w NSM. Nie jest przy tym konieczne, ażeby znaczenia opisywać i określać poprzez primes. Ważne jest, aby w celu uniknięcia błędnego koła podczas objaśnień definicji nie koncentrować się na synonimach i antonimach. Jak takie i podobne objaśnienia mogą wyglądać, pokazane jest na przykładach kilku definicji, które wyjaśnione zostały w oparciu o sposób określenia znaczenia przyjęty w NSM. Autorka dyskutuje również opisy i warunki działania takiej metody. Na zakończenie przedstawione są propozycje w zakresie metodologii nauczania umiejętności definiowania podczas zajęć języka obcego

    In Vitro–In Silico Modeling of Caffeine and Diclofenac Permeation in Static and Fluidic Systems with a 16HBE Lung Cell Barrier

    Get PDF
    Static in vitro permeation experiments are commonly used to gain insights into the permeation properties of drug substances but exhibit limitations due to missing physiologic cell stimuli. Thus, fluidic systems integrating stimuli, such as physicochemical fluxes, have been developed. However, as fluidic in vitro studies display higher complexity compared to static systems, analysis of experimental readouts is challenging. Here, the integration of in silico tools holds the potential to evaluate fluidic experiments and to investigate specific simulation scenarios. This study aimed to develop in silico models that describe and predict the permeation and disposition of two model substances in a static and fluidic in vitro system. For this, in vitro permeation studies with a 16HBE cellular barrier under both static and fluidic conditions were performed over 72 h. In silico models were implemented and employed to describe and predict concentration–time profiles of caffeine and diclofenac in various experimental setups. For both substances, in silico modeling identified reduced apparent permeabilities in the fluidic compared to the static cellular setting. The developed in vitro–in silico modeling framework can be expanded further, integrating additional cell tissues in the fluidic system, and can be employed in future studies to model pharmacokinetic and pharmacodynamic drug behavior

    Physiologically-Based Pharmacokinetic (PBPK) Modeling of Buprenorphine in Adults, Children and Preterm Neonates

    Get PDF
    Buprenorphine plays a crucial role in the therapeutic management of pain in adults, adolescents and pediatric subpopulations. However, only few pharmacokinetic studies of buprenorphine in children, particularly neonates, are available as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling allows the prediction of drug exposure in pediatrics based on age-related physiological differences. The aim of this study was to predict the pharmacokinetics of buprenorphine in pediatrics with PBPK modeling. Moreover, the drug-drug interaction (DDI) potential of buprenorphine with CYP3A4 and P-glycoprotein perpetrator drugs should be elucidated. A PBPK model of buprenorphine and norbuprenorphine in adults has been developed and scaled to children and preterm neonates, accounting for age-related changes. One-hundred-percent of the predicted AUClast values in adults (geometric mean fold error (GMFE): 1.22), 90% of individual AUClast predictions in children (GMFE: 1.54) and 75% in preterm neonates (GMFE: 1.57) met the 2-fold acceptance criterion. Moreover, the adult model was used to simulate DDI scenarios with clarithromycin, itraconazole and rifampicin. We demonstrate the applicability of scaling adult PBPK models to pediatrics for the prediction of individual plasma profiles. The novel PBPK models could be helpful to further investigate buprenorphine pharmacokinetics in various populations, particularly pediatric subgroups

    Sea Bass Primary Cultures versus RTgill-W1 Cell Line: Influence of Cell Model on the Sensitivity to Nanoparticles

    Get PDF
    Determination of acute toxicity to vertebrates in aquatic environments is mainly performed following OECD test guideline 203, requiring the use of a large number of fish and with mortality as endpoint. This test is also used to determine toxicity of nanomaterials in aquatic environments. Since a replacement method for animal testing in nanotoxicity studies is desirable, the feasibility of fish primary cultures or cell lines as a model for nanotoxicity screenings is investigated here. Dicentrarchus labrax primary cultures and RTgill-W1 cell line were exposed to several concentrations (0.1 to 200 ug/mL) of different nanoparticles (TiO2, polystyrene and silver), and cytotoxicity, metabolic activity and reactive oxygen species formation were investigated after 24 and 48 h of exposure. Protein corona as amount of protein bound, as well as the influence of surface modification (-COOH, -NH2), exposure media (Leibovitz’s L15 or seawater), weathering and cell type were the experimental variables included to test their influence on the results of the assays. Data from all scenarios was split based on the significance each experimental variable had in the result of the cytotoxicity tests, in an exploratory approach that allows for better understanding of the determining factors affecting toxicity. Data shows that more variables significantly influenced the outcome of toxicity tests when the primary cultures were exposed to the different nanoparticles. Toxicity tests performed in RTgill-W1 were influenced only by exposure time and nanoparticle concentration. The whole data set was integrated in a biological response index to show the overall impact of nanoparticle exposures.This study was supported by a postdoctoral grant to AJ-R (Basque Government; POSDOC program 2017–2019), Basque Country, Spain; and Federal Ministry of Education and Research, BMBF (NanoUmwelt, grant agreement Nº 030150B), Germany

    Biocompatible micro-sized cell culture chamber for the detection of nanoparticle-induced IL8 promoter activity on a small cell population

    Get PDF
    In most conventional in vitro toxicological assays, the response of a complete cell population is averaged, and therefore, single-cell responses are not detectable. Such averaging might result in misinterpretations when only individual cells within a population respond to a certain stimulus. Therefore, there is a need for non-invasive in vitro systems to verify the toxicity of nanoscale materials. In the present study, a micro-sized cell culture chamber with a silicon nitride membrane (0.16 mm2) was produced for cell cultivation and the detection of specific cell responses. The biocompatibility of the microcavity chip (MCC) was verified by studying adipogenic and neuronal differentiation. Thereafter, the suitability of the MCC to study the effects of nanoparticles on a small cell population was determined by using a green fluorescence protein-based reporter cell line. Interleukin-8 promoter (pIL8) induction, a marker of an inflammatory response, was used to monitor immune activation. The validation of the MCC-based method was performed using well-characterized gold and silver nanoparticles. The sensitivity of the new method was verified comparing the quantified pIL8 activation via MCC-based and standard techniques. The results proved the biocompatibility and the sensitivity of the microculture chamber, as well as a high optical quality due to the properties of Si3N4. The MCC-based method is suited for threshold- and time-dependent analysis of nanoparticle-induced IL8 promoter activity. This novel system can give dynamic information at the level of adherent single cells of a small cell population and presents a new non-invasive in vitro test method to assess the toxicity of nanomaterials and other compounds

    Physiologically-Based Pharmacokinetic (PBPK) Modeling Providing Insights into Fentanyl Pharmacokinetics in Adults and Pediatric Patients

    Get PDF
    Fentanyl is widely used for analgesia, sedation, and anesthesia both in adult and pediatric populations. Yet, only few pharmacokinetic studies of fentanyl in pediatrics exist as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling is a mechanistic approach to explore drug pharmacokinetics and allows extrapolation from adult to pediatric populations based on age-related physiological differences. The aim of this study was to develop a PBPK model of fentanyl and norfentanyl for both adult and pediatric populations. The adult PBPK model was established in PK-Sim® using data from 16 clinical studies and was scaled to several pediatric subpopulations. ~93% of the predicted AUClast values in adults and ~88% in pediatrics were within 2-fold of the corresponding value observed. The adult PBPK model predicted a fraction of fentanyl dose metabolized to norfentanyl of ~33% and a fraction excreted in urine of ~7%. In addition, the pediatric PBPK model was used to simulate differences in peak plasma concentrations after bolus injections and short infusions. The novel PBPK models could be helpful to further investigate fentanyl pharmacokinetics in both adult and pediatric populations

    Synthesis and in vitro evaluation of cyclodextrin hyaluronic acid conjugates as a new candidate for intestinal drug carrier for steroid hormones

    Get PDF
    Steroid hormones became increasingly interesting as active pharmaceutical ingredients for the treatment of endocrine disorders. However, medical applications of many steroidal drugs are inhibited by their very low aqueous solubilities giving rise to low bioavailabilities. Therefore, the prioritized oral administration of steroidal drugs remains problematic. Cyclodextrins are promising candidates for the development of drug delivery systems for oral route applications, since they solubilize hydrophobic steroids and increase their rate of transport in aqueous environments. In this study, the synthesis and characterization of polymeric β-cyclodextrin derivates is described, which result from the attachment of a hydrophilic β-CD-thioether to hyaluronic acid. Host-guest complexes of the synthesized β-cyclodextrin hyaluronic acid conjugates were formed with two poorly soluble model steroids (β-estradiol, dexamethasone) and compared to monomeric β-cyclodextrin derivates regarding solubilization and complexation efficiency. The β-cyclodextrin-drug (host-guest) complexes were evaluated in vitro for their suitability (cytotoxicity and transport rate) as intestinal drug carriers for steroid hormones. In case of β-estradiol, higher solubilities could be achieved by complexation with both synthesized β-cyclodextrin derivates, leading to significantly higher intestinal transport rates in vitro. However, this success could not be shown for dexamethasone, which namely solubilized better, but could not enhance the transport rate significantly. Thus, this study demonstrates the biocompatibility of the synthesized and characterized β-cyclodextrin derivates and shows their potential as new candidate for intestinal drug carrier for steroid hormones like β-estradiol

    Comprehensive Parent-Metabolite PBPK/PD Modeling Insights into Nicotine Replacement Therapy Strategies

    Get PDF
    Background Nicotine, the pharmacologically active substance in both tobacco and many electronic cigarette (e-cigarette) liquids, is responsible for the addiction that sustains cigarette smoking. With 8 million deaths worldwide annually, smoking remains one of the major causes of disability and premature death. However, nicotine also plays an important role in smoking cessation strategies. Objectives The aim of this study was to develop a comprehensive, whole-body, physiologically based pharmacokinetic/ pharmacodynamic (PBPK/PD) model of nicotine and its major metabolite cotinine, covering various routes of nicotine administration, and to simulate nicotine brain tissue concentrations after the use of combustible cigarettes, e-cigarettes, nicotine gums, and nicotine patches. Methods A parent–metabolite, PBPK/PD model of nicotine for a non-smoking and a smoking population was developed using 91 plasma and brain tissue concentration–time profles and 11 heart rate profles. Among others, cytochrome P450 (CYP) 2A6 and 2B6 enzymes were implemented, including kinetics for CYP2A6 poor metabolizers. Results The model is able to precisely describe and predict both nicotine plasma and brain tissue concentrations, cotinine plasma concentrations, and heart rate profles. 100% of the predicted area under the concentration–time curve (AUC) and maximum concentration (Cmax) values meet the twofold acceptance criterion with overall geometric mean fold errors of 1.12 and 1.15, respectively. The administration of combustible cigarettes, e-cigarettes, nicotine patches, and nicotine gums was successfully implemented in the model and used to identify diferences in steady-state nicotine brain tissue concentration patterns. Conclusions Our PBPK/PD model may be helpful in further investigations of nicotine dependence and smoking cessation strategies. As the model represents the frst nicotine PBPK/PD model predicting nicotine concentration and heart rate profles after the use of e-cigarettes, it could also contribute to a better understanding of the recent increase in youth e-cigarette use

    Informationen und Berichte

    Get PDF
    „Einsprachige und zweisprachige Wörterbücher im Spannungsfeld der Kulturgeschichte aus deutscher und polnischer Sicht“. Polnisch-deutsche Tagung. Toruń, 22.-23.05.2009 „Erzählregionen: Regionales Erzählen und Erzählen über eine Region“. Polnisch-deutsch-nordisches Symposium. Szczecin und Pobierowo, 24.-27.9.2009 „Bühne frei! Verwandlungen dramatischer Formen in Deutschland nach 1945 anlässlich des 20. Jahrestages des Mauerfalls“. Łόdź, 08.-11.10.2009 „Kulturbilder. Ästhetik, Übersetzung, Rezeption“. Translationskolloquium in Poznań, 26.- 29.10. 2009 „Zwischen Aufbegehren und Anpassung – poetische Figurationen von Generationen und Generationserfahrungen in der österreichischen Literatur“. 19. polnisch-österreichisches Germanistentreffen. Poznań, 19.-20.4.2010 &nbsp
    corecore