45 research outputs found

    Percolation transition in the gas-induced conductance of nanograin metal oxide films with defects

    Get PDF
    We use Monte-Carlo Simulations to study the conductance switching generated by gas-induced electron trapping/-releasing in films of sintered metal oxide nanoparticles by using a site-bond percolation model. We explore the possibilities of gas sensors based on these mechanisms. In our study, we model films of different thicknesses where the conductance values of the grains (sites) and of the contacts (bonds) between these grains depend on the surface density Nr of adsorbed gas molecules from the ambient atmosphere. Below a critical density Nr=Nr,c , the system is insulating due to the interruption of current flow, either through the connecting bonds or through the grain interior. This leads to two competing critical gas covering thresholds N(bond)r,c and N(site)r,c , respectively, that separate the insulating from the conducting phase. For N(site)r,c>N(bond)r,c , the characteristic curve of monodisperse sensors shows a noticeable jump from zero to a finite conductance at Nr=N(site)r,c , while for polydisperse sensors site percolation effects modify the jump into a steep increase of the characteristic curve and thus lead to an enhanced sensitivity. For N(site)r,c<N(bond)r,c , both mono- and polydisperse systems follow the same curves that show a smoother characteristic increase ∝(Nr−N(bond)r,c)2 which reveals that, despite the occurrence of an inherent bond percolation effect close to Nr,c , the increase of the bonds is the dominating effect

    Seasonal overturning circulation in the Red Sea : 2. Winter circulation

    Get PDF
    Author Posting. ©0American Geophysical Union, 2014. This article is posted here by permission of [American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 2263–2289, doi:10.1002/2013JC009331.The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.Partial support for this effort was provided by the Saudi Aramco Marine Environmental Research Center at KAUST.2014-10-1

    An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models

    Get PDF
    The study investigates perspectives of the parameter estimation problem with the adjoint method in eddy-resolving models. Sensitivity to initial conditions resulting from the chaotic nature of this type of model limits the direct application of the adjoint method by predictability. Prolonging the period of assimilation is accompanied by the appearance of an increasing number of secondary minima of the cost function that prevents the convergence of this method. In the framework of the Lorenz model it is shown that averaged quantities are suitable for describing invariant properties, and that secondary minima are for this type of data transformed into stochastic deviations. An adjoint method suitable for the assimilation of statistical characteristics of data and applicable on time scales beyond the predictability limit is presented. The approach assumes a greater predictability for averaged quantities. The adjoint to a prognostic model for statistical moments is employed for calculating cost function gradients that ignore the fine structure resulting from secondary minima. Coarse resolution versions of eddy-resolving models are used for this purpose. Identical twin experiments are performed with a quasigeostrophic model to evaluate the performance and limitations of this approach in improving models by estimating parameters. The wind stress curl is estimated from a simulated mean stream function. A very simple parameterization scheme for the assimilation of second-order moments is shown to permit the estimation of gradients that perform efficiently in minimizing cost functions

    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST

    The earth in space / by A.K. Lobeck

    No full text
    Includes text correlated with individual maps and diagrams.Colo
    corecore