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ABSTRACT

The study investigates perspectives of the parameter estimation problem with the adjoint method
in eddy-resolving models. Sensitivity to initial conditions resulting from the chaotic nature of
this type of model limits the direct application of the adjoint method by predictability.
Prolonging the period of assimilation is accompanied by the appearance of an increasing number
of secondary minima of the cost function that prevents the convergence of this method. In the
framework of the Lorenz model it is shown that averaged quantities are suitable for describing
invariant properties, and that secondary minima are for this type of data transformed into
stochastic deviations. An adjoint method suitable for the assimilation of statistical characteristics
of data and applicable on time scales beyond the predictability limit is presented. The approach
assumes a greater predictability for averaged quantities. The adjoint to a prognostic model for
statistical moments is employed for calculating cost function gradients that ignore the fine
structure resulting from secondary minima. Coarse resolution versions of eddy-resolving models
are used for this purpose. Identical twin experiments are performed with a quasigeostrophic
model to evaluate the performance and limitations of this approach in improving models by
estimating parameters. The wind stress curl is estimated from a simulated mean stream function.
A very simple parameterization scheme for the assimilation of second-order moments is shown
to permit the estimation of gradients that perform efficiently in minimizing cost functions.

1. Introduction demands for assimilation techniques are changing.
Results from assimilation experiments with low-

Data assimilation in meteorology and oceano- resolution models suggest that models with much
graphy with strong constraint variational inverse higher resolution are needed in order to find an
methods tries to find a particular solution of a oceanic state consistent with real climatological
dynamical system that best matches the observa- data (Marotzke and Wunsch, 1993; Schiller and
tions in a certain time interval (Le Dimet and Willebrand, 1995; Yu and Malanotte-Rizzoli,
Talagrand, 1986). In oceanographic applications 1998). Additionally, a steady-state ocean is not in
of this inverse technique, the idea that parameters agreement with observations, which reveal variab-
can be determined from a steady oceanic circula- ility on a wide range of space and time scales.
tion has so far played an important role for the Applications of the adjoint method in high-
design of the experiments. This view and the resolution models came into fashion particularly

with the use of satellite altimeter data (Moore,
1991). Although using the adjoint method for state
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models. In the meteorological literature the initial include a prognostic calculation of the error and
therefore avoid the unbounded error variancecondition is mainly regarded as a parameter for

optimization with the aim of predicting the flow growth that Evensen (1992) found by imple-
menting the extended Kalman filter with a high-for the time that follows the assimilation period.

From this point of view assimilation time is limited resolution QG model.
From a statistical point of view the picture of aby the predictability of the flow. For longer assim-

ilation times exact initial conditions cannot be steady ocean is not completely inadequate, since
certain characteristic features of the ocean circula-recovered (Tanguay et al., 1995).

The circulation simulated by eddy-resolving tion remain steady or change at least on time
scales much longer than the eddy time scale.models is also subject to chaotic dynamics which

restricts the applicability of the adjoint method to Lorenz (1975) introduced the concept of predict-
ability of the second kind that regards a responsevery short time ranges. For ocean models this

range is of the order of a few months, but in order of statistical properties to a change in forcing.
Palmer (1993) regards the climate as the attractorto estimate parameters (as opposed to initial con-

ditions) a considerably longer time period is neces- of a nonlinear dynamical system in a quasi-station-
ary regime. He added a forcing function to thesary (Schröeter et al., 1993). Increasing the period

beyond this time is accompanied by reduced con- Lorenz (1963) system and found that the probabil-
ity density function (PDF) changes with the for-vergence rates or even divergence of the optimiza-

tion which starts in the smaller scales first cing. From this he concludes that a change in the
PDFs will reveal the influence of the forcing. The(Tanguay et al., 1995). This behavior is a con-

sequence of the chaotic dynamics in high-reso- present work will follow his footsteps searching
for an adjoint method that involves only statisticallution models (Gauthier, 1992). The failure of

convergence during the search for an optimal properties such as mean values and variability.
Arguments exist for the potential of predicting thesolution is directly related to the characteristics of

the cost function. When extending the period of ocean climate state in the presence of a chaotic
subsystem (Griffies and Bryan, 1997) which canassimilation, an increasing number of secondary

minima of the cost function emerges (Li, 1991; be explained by considering subsystems with
different characteristic time scales (Boffetta et al.,Stensrud and Bao, 1992). Among the few methods

trying to extend the limits of the adjoint method 1998). The idea is to constrain only statistical
properties, in order to extend the limits of theare the quasi-static variational assimilation algo-

rithm (Pires et al., 1996) and an averaging method adjoint method beyond the predictability limit
and to allow the utilization of eddy-resolvingby Lea et al. (2000). The former tries to avoid the

solution getting trapped in secondary minima by models for state estimations in at least a statist-
ical sense.tracking the absolute minimum over progressively

longer assimilation periods, whereas the latter In Section 2 the idea for an algorithm is illus-
trated by regarding the behavior of cost functionsfilters the effect of secondary minima by averaging

sensitivities over many initial conditions. that are based on statistical quantities. The
method is described in Section 3. An applicationFor linear dynamics the sequential Kalman filter

produces the same state at the end of the assimila- to a QG model is presented in Section 4.
Concluding remarks and a proposal for a possibil-tion period as variational methods, provided the

error statistics are known (Thacker, 1986). In spite ity to include higher order moments are presented
in Section 4.4 and Section 5.of this relation, sequential methods which are

widely and successfully used for the assimilation
in high-resolution models (Killworth et al., 2001;
Fox et al., 1998) do not show obvious problems 2. Lorenz model
connected with the finite predictability of these
type of models. Limitations through finite time In order to extend the variational method

beyond the predictability limit, it is clearly notpredictability enter the Extended Kalman Filter
(EKF) along with linearized equations that predict sufficient merely to define the cost function on the

basis of statistical quantities. Relying on the abilitythe error covariance. For computational reasons
most applications of sequential methods do not to find a special trajectory, that optimally repres-
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ents the statistical constraints, the original formu-
lation of the adjoint method would still fail. This
will be demonstrated in this section. Starting with
the standard formalism and regarding the cost
function will illustrate the idea for an alternative
approach.

The Lorenz (1963) model is a well known
chaotic system and results from a spectral trunca-
tion of the equations that describe the Rayleigh–
Bénard convection problem. In the chaotic limit
the Lorenz model no longer corresponds to a
physical system. However, it shares some funda-
mental properties of real but more complex cha-
otic systems. The Lorenz equations

ẋ=−sx+sy, (1)

ẏ=rx−y−xz, (2)

ż=−bz+xy, (3)

are integrated with a standard fourth-order Fig. 1. Temporal evolution of the norm of gradient ∂J/∂
Runge–Kutta scheme with a step size Dt=0.01; s r of the cost function (4) calculated with the adjoint
is the Prandtl number, b is the domain aspect method. The Rayleigh number is r=31. The slope corre-

sponds to a Lyapunov value of about one as calculatedratio, and r is a normalized Rayleigh number
by Nese et al. (1987).which is chosen as the control parameter in the

following.
In order to demonstrate how invariant proper- nents which give a quantitative measure of chaos

ties of the attractor could be used for the estima- (Oseledec, 1968). Positive values describe the sens-
tion of parameters, a cost function itivity to small changes in the initial conditions.

For r>rH=24.74 the Lorenz system is chaoticJ= (x:−x:°)2+ (y:−y:°)2+ (z:−z:°)2, (4)
with Lyapunov exponents of (0.93, 0, −14.60) for

based on the mean position the classical parameters (Nese et al., 1987).
Eigenvalues of the linearized and adjoint models

x:= 1
t P t

0
x(t∞) dt∞ (5) are closely related to Lyapunov exponents and

sensitivity analysis (Palmer, 1996). The mode of
the adjoint model with the largest real part of theof the trajectory is chosen where the reference

values x:°, y:°, z:° are taken from experiments with corresponding eigenvalue is the largest singular
vector at initial time. In the limit of infinite timethe classical parameters s=10.0, r=28.0, and

b=8/3. The trajectory orbits the two unstable periods the largest Lyapunov exponent corre-
sponds to the real part of the dominant eigenvaluefixed points, z=r−1, x=y=±�r−1 and is

moved when the parameter changes. The mean of the modal growth of the adjoint model. The
adjoint variable is dominated by the most unstablevalues are x:=y:=0 and z:≈r−1. The macro-

scopic sensitivity of the cost function with respect eigenvector of the adjoint propagator and there-
fore shows exponential growth.to r that can be derived from finite perturbations

can therefore be expected to approach 2(z:−z:°) The exponential growth in Fig. 1 corresponds
very well to the maximum Lyapunov exponentsfor long integration periods. The time dependence

of the exact cost function gradient, ∂J/∂r, as calculated by Nese et al. (1987). Since the adjoint
variable mediates the gradient of the cost functioncalculated by the adjoint is displayed in Fig. 1 and

shows in contrast to this an almost exponential with respect to any parameter, exponential growth
of adjoint variables is transferred to an exponentialgrowth. This behavior is generic and due to the

chaotic nature of the Lorenz system. Chaotic growth of almost all gradients. This is an expres-
sion for the fact that almost any parameter changesystems may be characterized by Lyapunov expo-
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causes a disturbance of the trajectory which leads The evolution of the cost function (4) in depend-
ence on the parameter r is shown in Fig. 2 for ato exponential error growth. Note that even in

cases where the limit of validity of linearization number of increasing integration periods. For
small intervals t the cost function seems to haveis by far exceeded, the validity of the gradient

obtained from tangent linear adjoint equations by a unique minimum and is significantly non-para-
bolic due to the nonlinearity of the system.the variational formulation still holds. The expo-

nential growth must thus be related to character- Extending the interval beyond a few times the
characteristic time scale is accompanied by theistics of the cost function.

In physical systems state variables and cost emergence of an increasing number of secondary
minima. The characteristic time scale (of order offunction values are normally bound by an upper

limit. Since exponentially increasing cost func- one in the Lorenz case) might be compared to the
eddy time scale of one month for ocean models.tion gradients are generic for chaotic systems

(appearing for almost all parameter choices rather In the limit of very long integration times the cost
function approaches a parabolic form, reflectingthan only for a certain set of parameter

values), they are necessarily accompanied by a the almost linear dependence of the position of
the attractor on the parameter r. Secondarygrowing number of secondary minima and vice

versa. The existence of secondary minima that minima are no longer resolved and appear as
stochastic deviations. This stochastic limit that isprevents the convergence of the adjoint method

can therefore be diagnosed from an exponential approached for t=200 in the Lorenz case would
correspond to an integration period of the orderincrease of the norm of the adjoint variables. In

the limit of long integration times, sensitivities of a decade for ocean models.
The Lorenz model is deterministic so that theestimated by the adjoint method only reflect the

chaotic nature of the model and are different to cloud of dots still belongs to a continuous curve.
However, a detailed investigation of the distribu-sensitivities that were derived from finite perturba-

tions of model parameters in sensitivity studies. tion of mean and cost function values from a small
interval around r=31 shown in Fig. 3 reveals aHowever, the chaotic nature of high-resolution

models also blurs the assessment of a finite per- Gaussian distribution for the mean values. This
result suggests that statistical moments of theturbation used in sensitivity studies in the way

that a reliable influence of the parameter is only nonlinear Lorenz model might be described by a
less complex model (e.g. x:=y:=0 and z:≈r−1)detectable if the perturbation is large enough or

the integration time is long enough. Otherwise it plus stochastic white noise forcing with variance
taken from Fig. 3.is impossible to separate the effect of slightly

changing the attractor from a macroscopic change For infinite integration times the cost function
as in Fig. 2 will approach a curve that looksof the trajectory on a nearly unchanged attractor.

Small perturbations cause a macroscopic change smooth, but is nowhere differentiable. The gradient
calculated by the standard variational approachin the trajectory but in general a smooth change

of the underlying dynamics expressed by the correctly describes the topology of this cost func-
tion but is of very little help in finding the absoluteattractor (Eckmann, 1981). An exception from

this is bifurcation points, where the topological minimum. Being almost vertical, the gradient
will only lead to the neighboring minimum.nature of the attractor may change when the

parameter crosses certain critical values. For sens- Sensitivities calculated with the adjoint method
give no information on the dependence of theitivity studies with ocean models in particular, a

different model result may suggest the influence mean position on the parameter. In contrast to
this, finite parameter perturbations as applied byof a changed parameter, whereas the true reason

lies in a different realization of the chaotic eddy investigating macroscopic sensitivity approxi-
mately may provide an estimation for the correctfield that is sensitive to any changes. It is therefore

necessary to provide error information with any dependency. In order to calculated this kind of
sensitivity with an adjoint method, Lea et al.quantity derived from an eddy resolving model

that gives an idea how large the influence of (2000) employ an ensemble average of cost func-
tion gradients of short time slices of one longdifferent realizations of the eddy field on this

quantity is. integration period to filter the effect of secondary
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Fig. 2. Evolution of the cost function (4) from the Lorenz model in dependence on the Rayleigh number r when
increasing the integration period t. The transition from a continuous curve into isolated points for t>50 is only
due to a limited number of cost function evaluations (Dr=10−3). The number of secondary minima has then
exceeded the number of evaluations.
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J

J

Fig. 3. Probability density functions describing the distribution of the mean values x: , y: , and z: and the cost function
J of the Lorenz model together with Gaussian approximations. The ensemble of realizations is constructed by
varying r slightly around a mean value of r=31.

minima. They were able to estimate the correct is not controllable by parameter changes. In the
case of the Lorenz model an independent modelmacroscopic sensitivity for an intermediate

window time scale of t=0.44. Is is not clear how capable of predicting an expectation values for x: ,
y: and z: would be a possible basis. It wouldthis approach performs in more complex models

where advection is important. describe a curve that fits the maximum of a PDF
that is given by the distribution of the cost functionThe problem of using the adjoint method in

chaotic systems results from its necessity to find a values in Fig. 2. This approach would be able to
calculate a ‘mean’ gradient in the sense that thisspecial trajectory, which is possible only within

the limits of predictability. Since the adjoint gradient disregards deviations of the limit curve
of Fig. 2. A general approach for a solution is tomethod relies on the ability to control the model

output by tuning the parameters, the method must base the method on prognostic equations for
statistical moments that describe the mean valuesbe based on prognostic equations for quantities

which are predictable up to the maximum integra- independently of the very sensitive special realiza-
tions of the trajectory. This assumes that thesetion time. The flow beyond the predictability limit

Tellus 54A (2002), 4



.    . 412

equations describe a statistically steady system, as equation of, for example, a simple QG model
describes the evolution of PDFs in a space ofin the Lorenz case, or have at least an inherently

longer predictability time scale. A formulation of thousands of dimensions.
Since only statistical moments are intended toa method based on this idea that also keeps the

advantages of a high-resolution forward model is be included in the cost function, it is sufficient to
regard for the constraint only equations thatdescribed in the following section. As one referee

noted, cost functions based on statistical moments describe the evolution of moments as they can be
obtained by Reynolds decomposition. From themay show multi-valued characteristics, meaning

that for a small parameter range cost function nonlinearity of the evolution equation a closure
problem arises, and it becomes necessary tovalues may accumulate near two or more different

curves. The independent description of the statist- express second-order moments of the state vector
in terms of first-order moments. The equation forical moments can not capture this kind of behavior

and the method will thus be formulated under the the evolution of the first-order moment x̂ of a
general state vector x (here we introduce a newprerequisite of a single-valued cost function.
definition of x different to that in the previous
section) might symbolically be represented as

3. Method
dx̂

dt
= f̂ (x̂) . (6)

The need for a separate adjoint to a model that
describes PDFs or mean values independently of The statistical model in the strong constraint
special realizations of a trajectory of the forward would determine two equations, the forward and
model was illustrated in the previous section with an adjoint to the statistical model. However, there
the Lorenz model. Equations for the evolution of is no such model available to calculate the evolu-
the PDFs can be easily derived from the model tion of moments with the required accuracy.
equations when stochastic forcing is added and Different approximations are therefore applied for
are given by the Fokker–Planck equation (Risken, the two different models. The scheme in Fig. 4
1984). This approach has been used recently to illustrates the approximations that are described
circumvent limitations in strongly nonlinear sys- in the following. In the forward part of the adjoint
tems by defining sequential assimilation proced- method (left branch) the statistical model (6) is
ures in terms of PDFs. Miller et al. (1994) and replaced by time averaging the solution of the
Evensen (1994) derived a generalization of the
EKF based on Monte-Carlo estimates of covari-
ance statistics. This method is found to work well
in QG models by Evensen and van Leeuwen
(1996). It can be regarded as a second-order
moment approximation of the more general
method of Miller et al. (1999), who applied the
Bayes theorem directly to PDFs calculated from
the Fokker–Planck equations. Although all neces-
sary statistics could be calculated from the forward
model similar to Evensen and van Leeuwen (1996),
a possible algorithm for the parameter estimation

Fig. 4. Outline of the approximation involved in the
problem would still require the integration of an derivation of the method. The model for statistical
adjoint to the Fokker–Planck equation. This direct moments ∂

t
x̂= f̂ (x̂), representing the constraint in the

Lagrangian J, is approximated in two different ways.method would be impracticable in systems of
Forward part ( left branch): The calculation of statisticaldimensions higher than three. For the Lorenz
moments x̂ is approximated by averaging the solution xmodel the integration of the Fokker–Planck equa-
of the high resolution model ∂

t
x= f (x). Adjoint part

tions and therefore their adjoint are yet similar in
(right branch): The adjoint is approximated by the

complexity as the integration of the Navier–Stokes adjoint of a coarse resolution twin model ∂
t
X=F(X)

equations. A simpler approach has to be consid- linearized around the mean value x: of the high reso-
lution model.ered in the following, since the Fokker–Planck
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high-resolution model covariance of the observations y, B the error
covariance of the a priori information, ab , of the
parameter a and H the observation operator, the

dx

dt
=f (x). (7)

scheme of the assimilation algorithm then reads:
This is a necessary replacement since state-of-the-

Minimize
art realizations x: of any moment x̂ are only

J(a)=1
2
(a−ab )TB−1(a−ab )available by time-averaging the solution of the

eddy-resolving model. A calculation of the solution +1
2
(Hx:−y)TO−1(Hx:−y) (9)

of the statistical model (6) is not needed. This
employing the high-resolution forward model (7)enables strong approximations for statistical
to calculate x: and the adjoint equationsmodel, since it is only needed for the construction

of the adjoint (right branch of the scheme). Being
−

dl

dt
=∂

X
F(	x:
, 	a
)†l+HTO−1(H	x:
−	y
)only a tool to calculate the gradient that is used

for the optimization, an approximation can still
(10)

be effective. The standard method is followed and
of the coarse-resolution twin (8) to estimate thethe closure problem is handled by introducing a
gradient. The time mean x: is calculated from themodel twin on a coarser grid,
solution of Eq. (7). After spatial averaging to the
coarse grid the moment 	x:
 is inserted into

dX

dt
=F(X), (8)

the adjoint equation (10).
This scheme allows the adjoint variables to bewith an increased eddy viscosity that mimics tran-

sient processes with short-term predictability. This propagated on the mean stream lines of the for-
ward model. The transient part, e.g. the eddy-fluxkind of parameterization usually has shortcomings

in regions where nonlinear processes are dominant terms, are only represented by simple parameteriz-
ations. Since the adjoint depends on a model for(see also Fig. 5) but might nevertheless be sufficient

to approximate (6) as a basis for the construction time-averaged quantities and is defined on a coarse
grid, only a subspace of the gradient can beof the adjoint model. Realizing that only tangent

linear equations are needed in the variational calculated from the adjoint variables and only the
part of the parameters that projects onto thisformalism enables a further improvement. In order

to construct the adjoint, the coarse resolution subspace can be estimated. This requires either a
decomposition of the parameter space to extractmodel (8) now serving as a simplified model for

the moments is expanded at the spatially averaged the coarse-resolution time-averaged subspace or
an interpolation of the gradient.mean value 	x:
, which is the best available

approximation of the moment. Spatial averages Approximating the statistical model by a low-
resolution model will cause the adjoint variableare indicated by 	 
 and 	x:
 describes a realization

of a moment calculated from the high-resolution and therefore the cost function gradients to be
only approximate. Further errors are introducedmodel, as opposed to x@ that derives from the

solution of a statistical model. by interpolation and averaging steps which link
the high-resolution forward and the low-resolutionCourtier et al. (1994) introduced a similar

approach with their incremental formulation of backward model. However, as in the outer loops
in the application of the incremental method bythe variational assimilation to reduce the cost of

the method for an operational implementation. Rabier et al. (1998), no approximations are made
within the cost function and the forward calcula-They expand the forward model at the first-guess

solution and use a simplification of the first-order tion. Since the gradient is only a means for finding
the minimum, errors in the adjoint variables willtangent linear term for the optimization steps

afterwards, and found that the algorithm works possibly reduce the performance with an eventual
failure in convergence of the method. This iswell.

Introducing a parameter a of the high-resolution especially true for the estimation of viscosity
coefficients, since the effect of mixing is differentlyforward model mimicking the controls that are to

be estimated, the adjoint operator of the coarse represented in the forward and the model that is
used for the construction of the adjoint. Althoughresolution twin model, ∂

X
F(X, 	a
)†, O the error
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it is formally still possible to calculate gradients limited area double gyre configuration is set up
on the b-plane with the Coriolis parameter at awith respect to viscosity coefficients, the gradient

may not be helpful at all. However, the shape of central latitude of 40° to mimic a simple model
for mid-latitude jets. The resolution is 1/6° in thethe cost function and the position of the minimum

will not be affected in any case. Sensitivities calcu- zonal and meridional direction and the area
extends meridionally from 32°N to 48°N. Thelated by this method are very likely to be subject

to a bias, especially concerning the amplitude and layer thicknesses are from top to bottom 300, 700
and 4000 m, respectively, and reduced gravities atexact positions of spatial features.

The error covariance O is a function of the the layer interfaces are 0.0357 and 0.0162 m s−2.
Friction coefficients are 10−7 s−1 for the bottommeasurement errors but also incorporates the

limited representativeness of the observations due friction and 102 m2 s−1 for harmonic lateral fric-
tion. The reference experiment is forced with zonalto variability of the physical system. Averaged

quantities appear in high-resolution models as wind stress given by t=t0 cos (2py/L
y
) with t0=

10−4 m2 s−2. A flat bottom is prescribed, and freestochastic quantities. An estimation of the covari-
ance O is possible from an ensemble of model slip conditions are applied at the closed boundar-

ies. The mean upper layer stream function (Fig. 5)integrations, assuming that the modeled variance
of the statistical moments is a good approximation is a statistical stationary double gyre. The max-

imum zonal velocity is about 1 m s−1 and theof the variance of moments of real data and that
the measurement errors are negligible in compar- maximum r.m.s. SSH variability about 60 cm.
ison. Systematic errors are not yet taken into
account. Presuming uncorrelated errors, informa-

4.2. Adjoint model
tion about a systematic bias can combined with
the ensemble error estimate afterwards. The prognostic model used for the construction

of the adjoint for stream function moments isThe method is so far only applicable for mean
values. The extension of this method for the identical to that described above except of a

decrease in resolution to 2/3° and an increase ofassimilation of higher-order moments is not
straightforward. A simple approach that uses para- the lateral friction to 104 m2 s−1. The solution of

this configuration is a stationary two-gyre systemmeterization schemes is presented in Section 4.4.
with a reduced penetration scale and velocity of
the zonal jet (Fig. 5b). The adjoint to the QG
model is described in Moore (1991) and Schröeter4. Assimilation experiments
(1993). A quasi-Newton method based on the
Davidon–Fletcher algorithm is chosen to minimizeTo evaluate the performance of the method,

experiments are performed with a QG model. The the cost function. The algorithm was successfully
applied by Jung et al. (1998). The discretizationnew method will be first tested in an identical twin

configuration where the perfect model assumption in time is changed to a finite difference of the
adjoint analogue to Sirkes and Tziperman (1997)holds and results can be tested against fields and

parameters of a reference experiment. The general in order to suppress the computational mode.
Since Eqs. (10) are linear autonomous equationsstrategy for all experiments is to reconstruct the

zonal wind stress curl from simulated statistical for calculation of the adjoint variable l, the system
represents a simple method, the relaxationmoments such as mean stream function and stream

function variance expressed as sea surface height method, for the calculation of the stationary solu-
tion. The adjoint step, therefore, is accelerated(SSH) variance. After an integration time of 20 yr

from a state of rest, the model approximately is in using a Gauss–Seidel solver, a more efficient
scheme. Calculating the stationary solution isa statistically stationary state.
found to perform more efficiently in the optimiza-
tion and is used throughout the following experi-

4.1. Model description
ments. In order to avoid a decomposition of
the parameter space into the coarse resolutionThe three-layer QG model is based on the

Holland (1978) model and basically identical to portion and its fine-scale complement, the simpler
approach is taken and the gradient is interpolatedthat described in Vogeler and Schröter (1995). A
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a b

Fig. 5. Annual mean upper layer stream function (in Sv) from the high-resolution experiment (a) and a coarse-
resolution experiment (b). Both experiments are taken from the 21th year of integration with identical wind forcing
as shown in Fig. 12. The coarse-resolution model is the 2/3° twin from which the adjoint was constructed and
therefore identical to the high-resolution model at 1/6° except for resolution and horizontal mixing. The high-
resolution run is used as reference experiment from which simulated data are taken.

to the high-resolution grid. The descent step is ensemble members are derived from varying the
reference wind stress curl by an amount of lessthen applied within parameter space of the

forward model. than 5%. Due to this choice of e2 the cost function
shows values of about one in the vicinity of the
minimum. Since the moments of high-resolution

4.3. Assimilation of stream function data
models are regarded as stochastic quantities no
additional noise is added to the simulatedTo measure the least-squares distance between

the actual upper layer mean stream function y1 observation.
and the simulated observations from a model run
with reference wind forcing, a quadratic cost func- 4.3.1. Behavior of the cost function. For a compar-
tion ison with the results from the Lorenz model, a

section through the cost function is made. The
J(t)=

1

N
∑
i

[y
i,1

(t)−y:
i,1

(t0 )]2
e2

(11) wind stress patterns that correspond to this section
are obtained by decomposing the reference func-
tion into discrete wavelet modes (Press et al.,is introduced where the summation index i is a

spatial index denoting the horizontal position. All 1993) and tuning the amplitude of the fourth
mode, which causes mainly large-scale variationsexperiments are started from the same initial con-

dition, which is the state after 20 yr of forward of the wind stress. A decomposition into wavelet
modes is chosen to allow for an easy reduction ofintegration with reference wind forcing. Mean

values were derived from an integration period of the number of degrees of freedom, realized in an
experiment described below. It was shown by1 yr. The control parameter is the curl of the zonal

wind stress vector t. Farge (1992), who also gives a review about
wavelets, that data from turbulence may be recon-The error covariance matrix O is assumed

to be diagonal and spatially homogeneous. structed fairly well by using only a limited number
of wavelet modes. The modes depend on a scaleTherefore, the variance e2 is the spatial average of

the variance of an ensemble of mean stream and a position parameter. The first two modes
describe the mean value of the function. Thefunctions, e.g. the diagonal variance of O. The
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remainder of the space is classified by a sequence model. The shift in the minimum shows that the
parameters estimated from an optimization withof N sets, n=1 .. . N. Each set contains 2n modes

of an identical wavelength proportional to 2−n, that model are significantly in error, due to system-
atic model errors. However, the resemblance ofstarting for n=1 with the wavelength that corre-

sponds to the length of the whole interval. The the shape of the cost function to the high-reso-
lution analogue suggests that a linearizationreference wind stress is thus described essentially

by the third and fourth mode. The reference wind approach about the mean calculated from the
solution of the eddy resolving model may workstress and the pattern resulting from doubling the

fourth coefficient is shown later in Fig. 12. fairly well. The precision up to which a parameter
can be retrieved is expected to depend on theFigure 6 shows the section through the cost

function. The curve shows some analogies to the noise level and the curvature of the cost function.
A criterion for terminating the optimization iscorresponding curve for the Lorenz system (Fig. 2)

and resembles one with stochastic deviations given by a reduction below the noise level, e.g. a
cost function value of one. This is not enforcedsuperposed on a parabolic shape. The smooth

black curve in Fig. 6 describes the cost function during most of the following experiments to
investigate the order of magnitude of the possiblethat results from a simulation with the low reso-

lution 2/3° model on which the adjoint is based. reduction.
The large displacement of this curve indicates that
no consistent solution can be found with that 4.3.2. Assimilation period of 1 yr. In this section

zonal wind stress curl is estimated from annual
mean stream function data. A period of 1 yr is not
sufficient for the model to equilibrate to changes
in wind stress. The reference experiment from
which the data are taken and the assimilation
experiment are started from identical initial condi-
tions (only the wind stress is changed). The wind
stress is thence estimated from the response of the
stream function to the changed wind stress instead
of estimating wind stress from a quasi-stationary
state. This experiment indicates whether the
response of statistical moments (the annual mean
upper layer stream function) to a parameter
change shows enhanced predictability in compar-
ison to the time scale that is associated with the
inherent chaotic dynamics at the mesoscale.

The optimization, in this and all subsequent
experiments, is started from a control parameter
that is obtained by changing the fourth mode of
the reference wind stress. Paths from minimizing
the cost function (11) by estimating the zonal
wind stress are shown in Fig. 7 against the normal-
ized Euclidean distance to the true wind stress

Fig. 6. Samples from sections through cost functions
curl. The paths generally leave the line that isbased on annual mean upper layer stream functions.
marked by the section through the cost function,Simulated observations are from the high-resolution

model with the reference wind forcing t°. The dependence since the optimization space is not one-dimen-
on the parameter V×t, which is effectively the fourth sional. Cost function values therefore may show
mode of a wavelet decomposition, is displayed by the considerably higher or lower values for the same
normalized Euclidean difference to V×t°. The crosses

Euclidean distance, even if the cost function would
correspond to experiments with the high-resolution 1/6°

be free of noise. The optimization is assessed inforward model. The smooth curve is the cost function
the figure simultaneously on basis of the distancethat results from simulations with the low-resolution

2/3° model. in parameter and observation space.
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A parameter null-space that is unobservable
from mean stream function data may account for
the remaining difference from the reference para-
meter and the failure in improving the estimation
by ensemble information. This is investigated by
performing the optimization in wavelet space
instead of physical space and by restricting the
parameter space to the four first modes of the
wavelet decomposition. Since this optimization
ends up with the same distance to the minimum
(not shown), it is not likely that a null-space
accounts for the limitation. The precisions is either
be limited by a general error of the gradient due
to the approximation necessary within this method
or by trapping into larger secondary minima (such
as the one visible in Fig. 7) that were not ignored
by the calculation of the gradient with the coarse

Fig. 7. Samples from a section through the cost function
resolution adjoint.from Fig. 6 together with paths from optimizing the

The important part in estimating the posteriorzonal wind stress t. The cost-function values are based
error covariance of parameters is according toon annual mean upper-layer stream functions. The para-

meter of the optimization is the full zonal wind stress. Thacker (1989) the inverse of the Hessian matrix
Both sets are displayed as a function of the Euclidean of the cost function. An approximation to the
distance to the reference wind stress t°. The solid path inverse of the Hessian is being constructed by the
is from an experiment that employs one realization. An

quasi-Newton algorithm. The calculation of the
ensemble of 10 realizations is used for the dashed path

Hessian requires about 100 adjoint computationsshown on the left-hand side for clarity. Ensemble mem-
for the present problem of estimating the zonalbers are derived by varying the wind stress slightly by

less than 5%. The cost-function values are then com- wind stress curl which still would be feasible.
puted as a mean over the realizations. The parabola is However, for our method it is expected that at
fitted by hand and used for an a posteriori error estimate. the final stage the estimation of the Hessian is

corrupted by the variability of the gradient, which
is then strongly subject to the stochastic nature ofFor the dashed path in Fig. 7 an ensemble of

10 realizations was used to investigate whether a the cost function. However, linear Sverdrup theory
predicts a direct relation between zonal wind stressreduction of the noise level results in a higher

precision of the parameter estimation. The mem- and stream function. It seems thus sensible to
assume isotropy for the dependence of the costbers are constructed by varying slightly the para-

meter by less than 5%. The ensemble was used to function on the parameter, which means that the
cost function is expected to depend mainly on theconstruct an ensemble mean stream and cost

function. However, a single adjoint that is obtained Euclidean distance of the wind stress to the refer-
ence value. This is supported by the optimizationfrom linearizing around the ensemble mean is

employed to calculate cost function gradients. The experiments, since the paths from all optimizations
trace the shape of the one section through theeffect is similar to extending the period of assimila-

tion in terms of reducing eddy effects. The resulting cost function. A simple approach is then to estim-
ate the Hessian by fitting the shape of the costensemble variance reflects the spurious eddy effect

on the annual mean stream function which was function in Fig. 7 to a parabola. All parabolas
drawn together with sections through cost func-already used to define e2. The expected effect on

the precision is not captured, and the final state tions are obtained by adjusting the curve by hand
under the constraint that the value in the minimumis virtually of the same quality as in the experi-

ment on the basis of one single realization. The is one accounting for the normalization of the cost
function with the error variance. By this way, aEuclidean distance between the two final para-

meters is of the same order as the distance to the relative error of 25% of the zonal wind stress curl
is estimated from this approximation of thereference value.
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Hessian which is in correspondence with the of the last section, a second source of variability
influences the cost function. The QG modelachieved distance of the parameter estimation.
involves a wider spectrum of different time scales
than the Lorenz model. The cost function values4.3.3. Assimilation period of 5 yr. A period of 5 yr

is chosen to precede the assimilation to allow for are, in contrast to the 1-yr integration, now sub-
jected to low-frequency variability of the jet streamequilibration to the changed wind forcing, and the

period of assimilation is extended to a further 5 yr position (Meacham, 2000). Very small cost func-
tion values thus exist even for large parameterfrom which the stream functions are calculated to

reduce stochastic-like deviations caused by differ- errors which makes parameter estimations
difficult.ent eddy realizations. A period of 5 yr derives

from the response time of the model to changed Cost function values can increase even if para-
meter values are moved closer to truth if a para-wind stress, which is a little less than 5 yr. In order

to substantially reduce the cost function noise meter realization in the upper range of the cost
function variability occurs. Therefore smallrelated to low-frequency oscillation on a decadal

time scale Meacham (2000), much larger integra- improvement steps are generally unfavorable.
They will hinder the minimization process, becausetion periods are necessary but not feasible. The

definition of the cost function and the estima- the gradient does not contain information about
the fine structure of the cost function. Usually thistion of the error covariance is analogous to

Section 4.3.2. is only a problem if it happens during the first
steps, where the Hessian is only insufficientlyThe amplitude of the stochastic-like component

of the cost function shown in Fig. 8 is noticeably determined by prior steps. The optimization was
therefore restarted after the first step. For anincreased in comparison to the 1-yr experiment.

Though eddy effects on the mean stream function application with real data it is, however, not
possible to know whether the first parameterare decreased similar to the ensemble experiment
change in fact leads to a parameter improvement.
An unfavorable choice of the step size may deteri-
orate the parameter estimate, and a restart would
lead further away from the optimal value. The
value of the step sizes was thus tuned before in
coarse resolution identical twin experiments. With
the assumption of a favorable parameter change,
a restart is then suggested. Another possibility is
the ensemble approach that provides an estima-
tion for the variability of the cost function values
and information about the location of a realization
with respect to the ensemble mean.

The path from the optimization in Fig. 8 shows
that a final cost function value is found well below
the noise level in the vicinity of the minimum. All
cost function evaluations are plotted in the figure.
All cost function values of the last 10 iterations
are below the noise level, indicating that despite
the large relative wind stress curl error of about
30%, a wind stress vector is found that causes the
mean stream function to be in reasonable agree-
ment with the assimilated data. In terms of cost

Fig. 8. Samples from a section through the cost function function values, the estimated parameter is thus of
based on mean upper layer stream functions derived

the same quality as one that is much closer to the
from an integration period of 5 yr together with a path

reference parameter. The final parameter valuefrom optimizing the curl of the zonal wind stress t. The
has a normalized Euclidean distance to the correctstar denotes a restart of the descent algorithm. The para-

bola is fitted to the cost function by hand. parameter of about 27%. The error estimation
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gives a relative error of 17% which is lower than Sophisticated closure schemes and models for
higher-order moments are, however, only availablethe 1 yr averaging case, because the error is only

determined by the curvature of the parabola and for idealized geometries and forcing functions, e.g.
Holloway and Hendershott (1977), and would bethe noise level in the vicinity of the minimum

which was higher for the 1-yr period in comparison computationally impracticable. In this section
simple schemes for parameterizing the SSH vari-to the 5-yr experiment. Most of the points on the

path of the optimization are significantly below ance in the adjoint equations are considered for
the assimilation of SSH variance.the cloud of samples from the cost function,

showing that the assumption that the cost function A large fraction of eddy variability in ocean and
atmosphere models is generated due to instabilitymainly depends on the Euclidean distance of the

wind stress to the reference only holds marginally. processes that transfer energy from the mean
velocity to the transient part. Typical mechanismsThe 1-yr experiments show a better performance

than the 5-yr experiment in terms of relocating are baroclinic and barotropic instability arising
from vertical and horizontal shear of the meanthe wind stress, but are less able to reproduce the

mean stream function that is assimilated. This is velocity. In order to avoid contamination by noise
from differentiation, the mean upper layer velocitynot surprising, since for the 5-yr experiment

samples with very low cost function values are is used instead of velocity shear to parameterize
variability:densely distributed in the range of a 20% wind

stress curl error, whereas values below 0.5 are not
found in the 1-yr cost function in Fig. 7. The s2=k2 |u: |2=k2([∂

x
y: 1]2+[∂

y
y: 1]2) . (12)

success of the 1-yr experiment relies on the correct
initial condition. The 5-yr adjustment period that The mean is the temporal mean only and k is an

empirical coefficient of proportionality. The meanprecedes the 5-yr experiment decouples the stream
function from the influence of the initial condition. horizontal and vertical shear can be approximated

by the mean velocity divided by a typical hori-In the former experiment wind stress is thus
estimated from the response of the stream function zontal and vertical scale of the zonal jet, respect-

ively. Horizontal and an vertical scales areto the changed wind stress but estimated from a
quasi stationary stream function in the latter. assumed to be constant which is supported by

almost constant width of the zonal jet stream and
the small lower layer velocities. The proportional-

4.4. Assimilation of variance data
ity to the square of the velocity is assumed in
analogy to the parameterization of eddy fluxesThe assimilation of higher-order moments is

especially interesting in context with the use of derived by Green (1970) and Stone (1972) for the
baroclinic instability. A similar relation thataltimeter data. Due to the lack of a precise geoid,

only anomalies of the sea surface elevation are in involves mean kinetic energy derived from thermal
wind was used by Stammer (1997) to characterizegeneral assimilated in circulation models. The

sequential assimilation method of Oschlies and regions of high eddy kinetic energy.
Figure 9 shows that except for the boundaryWillebrand (1996) projects surface velocity incre-

ments onto deep velocity increments and calcu- regions a pattern similar to the variability can be
obtained by the parameterization from the meanlates the corresponding hydrographic adjustments

from an inversion of the thermal wind equation. stream function. Only the relation between vari-
ations of SSH variability and velocity variationsAn application shows that although variability

was markedly improved, the mean position of the enter the adjoint equations. In contrast to Eq. (12),
an additional additive constant can therefore befront which is associated with the variability was

not corrected. However, the strong dynamical link included into the estimation of k. The coefficient
k#0.3 s is estimated from the linear regressionbetween frontal structures and the corresponding

variability enables in principal the correction of displayed in Fig. 10. Typical regression coefficients
are between r=0.7 and r=0.9.the mean frontal position (which is related to a

first-order moment) by assimilating only informa- The definition of the cost function based on the
stream function variance, expressed as SSH vari-tion from second order moments as they are

available from SSH variance. ance s2 through the relation SSH= f0y1/g, is
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Fig. 9. Mean velocity (a, in m s−1) and SSH variability (b, in m), derived from a high-resolution model integration
of 2 yr.

assimilation and equilibration as in the last section

are chosen.

The amplitude of the stochastic-like component

of the cost function based on variance data and

illustrated in Fig. 11 is very similar to the analog

function based on mean stream functions. The

first-guess wind stress is the same as in the previous

section (see also Fig. 12). The path in parameter

space obtained by optimizing the wind stress

shows nearly no convergence to the correct value,

although the cost function is reduced to a value

below the noise level. The jet is moved from the

southward displaced position to a position that

)
(

( )

approximately corresponds to the observations
Fig. 10. Regression of the patterns shown in Fig. 9. Five (not shown). The wind stress curl shown in Fig. 12
points closest to the boundaries are disregarded to

reveals that the curve in the vicinity of the line of
exclude boundary currents which are not related to SSH

zero wind stress curl, which in linear Sverdrupvariability. The correlation coefficient is r=0.82.
theory is the position of the jet, is very well

recovered, but shows nearly no convergence else-
analogous to Section 4.3: where. In order to examine whether this feature is

robust against changing the initial guess for the

wind stress a second experiment was performed.J(t)=
1

N
∑
i

[s2
i,1

(t)−s2
i,1

(t0 )]2
e2
s

, (13)
The wind stress curl is derived from a point

reflection of the wind stress curl of the previousand the same strategy is used for estimating the
experiment (Fig. 13), thus shifting the position oferror e2

s
. In contrast to previous experiments con-

the jet to the north instead of to the south. Thecerning mean stream function data, it appears that
optimization path displayed in Fig. 11 shows thewithin a period of 1 yr the stream function changes
same feature as before and is reduced below thetoo little to significantly influence the variance.

For this reason the same two periods of 5 yr for noise level while the parameter is almost not
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Fig. 13. Curl of the wind stress t (in 10−4 m2 s−2): the
first guess wind stress curl (dashed) derives from point
reflection of the first guess of Fig. 12. The solid and the
dotted curve correspond to the reference experiment and
final iteration, respectively.

leads to jet stream position similar to the one thatFig. 11. Samples from a section through the cost func-
corresponds to the reference experiment. This istion based on SSH variances taken from an integration
not surprising, since Fig. 9 demonstrates the closeperiod of 5 yr, together with paths from optimizing the

zonal wind stress t with the parameterization from relation between the mean position of high variab-
Section 4.4. The paths correspond to the first-guess wind ility and the mean current.
stress curl displayed in Fig. 12 (dashed) and Fig. 13 Low sensitivities in the in combination with a
(solid). The first cost-function value of the solid path is

large noise level of the cost function introduce a20.2 and out of the region. The parabola is fitted by
unobservable null-space that can not be recoveredhand to the samples from the cost function.
from SSH variance alone. The experiment
employing mean stream function data performed
better in relocating the correct wind stress curl.
However, it is not clear whether the result is
robust with respect to a change of the initial
parameter choice. Investigating the relation
between the improvement of variance and the
improvement of the mean stream function, our
actual motivation for the experiment with variance
data, clarifies this point.

The first variance assimilation experiment is
analyzed by constructing two ensembles from
varying slightly the first guess and final parameter,
respectively. In Fig. 14 the two ensembles of cost
function values based on mean stream function,

Fig. 12. Curl of the wind stress t (in 10−4 m2 s−2): refer-
J(y: ), are then plotted against the correspondingence (solid), first guess obtained by replacing the ampli-
ensembles defined on basis of variance, J(s2). Thetude of the fourth mode of the wavelet decomposition
ensemble corresponding to the final parameterby twice the value (dashed) and the final iteration

(dotted). shows values around one for both cost function
types. The mean stream function and thus the
mean frontal position is improved and in accordimproved at all. The position of the zero curl line

is almost correct; however, a good fit in the vicinity with the stream function of the reference. Being a
promising result for the possibility of relocatingof the zero curl line is not established. Being

almost antisymmetric the wind stress curl still mean frontal positions by assimilating variance
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the circulation pattern changes (meaning that a
large subspace of almost equivalent wind stress
functions exist) especially because large low-fre-
quency variability of the stream function makes
slight changes of the dynamical behavior virtually
undetectable. This implies in reverse that the exact
wind stress is not inferable from circulation
characteristics.

5. Conclusion

The experiments presented here demonstrate
that it is possible to improve the state of a

0

1

4

3

2

4 6 82

dynamical system by assimilating statisticalFig. 14. Cost-function values of the mean stream func-
moments. We have here derived an extension oftion J(y: ) versus the SSH variance cost function J(s2).
the original adjoint formulation which offers aValues denoted by (×) and (#) are a posteriori ensembles

corresponding to the first guess and final wind stress way for improving parameters in high-resolution
curl of the variance assimilation shown in Fig. 11 (dashed ocean models with chaotic dynamics. The method
curve experiment). Both ensembles are generated by

may be used to correct systematic errors and in a
slightly varying the wind stress by less than 0.1%. The

statistical sense for state estimations with eddycurve shown corresponds to the solid curve of Fig. 11.
resolving models.

The standard adjoint method is limited by the
predictability of the dynamical system. Secondarydata only, the experiment puts the success of the

assimilation of stream function into perspective minima emerge when the period of assimilation is
increased beyond the predictability limit andyet. The same implication is supported by the

optimization path that is drawn in Fig. 14. The hinder the convergence of the method. Statistical
characteristics remain predictable for much longercost function values, J(y: ), for the final wind stress

of both variance assimilation experiments are periods than the eddy time scale and form the
basis of the method for increasing the assimilationalready consistent with the noise level of the

stream function cost function. Starting from this period. The cost function is thus based on statist-
ical moments and as a prerequisite for the formula-parameter, an assimilation of stream function data

would be with little perspective. Low J(y: ) values tion of the method, the eddy-resolving model is
used for calculation of the moments. Secondaryfor large parameter errors as constructed by assim-

ilating variance data only, demonstrate that the minima still emerge since only realizations of the
moments are calculated from the solution of thestream function cost function is probably as aniso-

tropic as the variance cost function. high-resolution model. For long integration
periods the moments could be regarded as singleAltogether, the potential for relocating the wind

stress is quite low, relocating the mean stream realizations of Gaussian distributed moments
which change smoothly for variations of para-function pattern by assimilating variance data

only seems to be better conditioned. An experi- meters. This was shown to be true in the case of
the Lorenz model.ment of estimating 2D wind stress curl fields by

assimilating mean stream function data (not The new approach applies the adjoint to a
prognostic model that describes the dynamics ofshown) supports this result. The cost function is

reduced below the noise level, while the parameter the moments. The formalism is able to calculate
cost function gradients that ignore the fine struc-error of the final estimate of the wind stress not

reduced. High sensitivities in the eastern part of ture of secondary minima. The application of
coarse resolution models as approximations forthe basin led to large parameter changes in this

part of the basin whereas the wind stress in the the moment models makes it necessary to add
special parameterization schemes for the assimila-western part remains almost unchanged. Changes

of wind stress are not closely enough linked to tion of higher-order moments. Very simple para-
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meterization approaches are tested for this recovered is limited by the variability of statistical
moments. The cost function gradient estimated bypurpose and shown to be able to predict gradients

which could be applied for efficient optimization the method is only approximately correct and it
is not clear how this error contributes to the finaland thus parameter estimation. A limited number

of iteration steps are sufficient to minimize below error in recovering the parameters. Both from the
optimization and from a simple theoretical consid-the noise level. The stochastic nature of moments

calculated from high-resolution models enables a eration, error values were found to be higher than
20%, which at the first sight would not be veryconsistent estimation of error covariances from

ensembles of simulations. encouraging for future applications of the method
in basin-wide ocean models. However, this is notSince the model of statistical moments was

selected to be only approximate, the choice of this a deficiency of the method, but results from very
high variability of the averaged quantities in themodel is in a certain sense arbitrary. As for the

construction of ocean models it is hard to predict most nonlinear region of western boundary cur-
rents. The estimation of parameter errors wereto what extent the simplified model is able to

estimate cost function gradients. One criteria less successful. This was due to large low-frequency
variability of the stream function leading to awould be the performance of the corresponding

coarse resolution forward model for the estimation large subspace of equivalent parameter values.
The basin-wide application that is subject of aof the data that is assimilated. The adjoint is

constructed by linearizing around the state from second article shows lower noise level and greater
precision for parameter estimations. Although thethe high-resolution model which is assumed to

increase the realism of the adjoint. The low unreal- assimilation of variance only reached cost function
values below the noise level almost without redu-istic penetration scale of the jet stream of the

coarse resolution model is thus less crucial. cing the parameter error, the mean stream function
is corrected simultaneously. The estimation of theIn case of the Lorenz model the statistical

moments were shown to be Gaussian distributed mean position of the jet from variability only is
well conditioned.quantities. This condition enables the validity of

the maximum likelihood argument used in vari-
ational methods which is generally found to be
violated in highly nonlinear models (Miller et al., 6. Acknowledgments
1999). However, the restoration of this condition
should not be over-rated, since its validity is The work was supported by the Bundes-

ministerium für Forschung und Technologie aslimited by a time scale separation argument which
probably will not hold for ocean models in same part of the German WOCE. We would like to

thank J. Schröter and A. Vogeler, who provideddistinct way as in the Lorenz case.
The precision up to which parameters could be the QG model and the adjoint used in this study.
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