91 research outputs found

    Evaluation of critical nitrogen and phosphorus models for maize under full and limited irrigation conditions

    Get PDF
    Proper nitrogen (N) fertiliser application rates and timing of application, coupled with optimum irrigation management can improve the sustainability of maize production and reduce the risk of environmental contamination by nutrients. The impact of full and limited irrigation and rainfed conditions on in-season maize (Zea mays L.) shoot biomass nutrient concentration and critical N and phosphorus (P) indices were evaluated using a combination of measured nutrients and critical N and P models in south central Nebraska in 2009 and 2010. Four irrigation treatments [fully-irrigated treatment (FIT), 75% FIT, 60% FIT and 50% FIT) and rainfed] were imposed. Irrigation regimes impacted the shoot biomass N concentration. The shoot biomass N concentration was above the critical N (Ncrit) concentration throughout the growing season under FIT and 75% FIT and was below the Ncrit value for the most limited irrigation (60% FIT and 50% FIT) and rainfed treatments. Nitrogen nutrient index (NNI) varied from 0.68 to 2.0. Biomass N concentration was below Ncrit [i.e., NNI\u3c1] from 105 days after planting (DAP) to harvest under rainfed and 50% FIT and from 114 DAP to harvest under 60% FIT. Overall, the FIT and the 75% FIT had NNI values greater than 1.0 throughout both growing seasons. Phosphorus concentration, which decreased with biomass accumulation and irrigation amounts, varied from 1.0 to 4.8 g kg–1, with FIT having the highest biomass P concentration. The critical N model combined with NNI can be used to evaluate N and P in maize for in-season nutrient diagnosis under the conditions presented in this research

    Dynamics of Crop Evapotranspiration of Four Major Crops on a Large Commercial Farm: Case of the Navajo Agricultural Products Industry, New Mexico, USA

    Get PDF
    Crop evapotranspiration (ETa) is the main source of water loss in farms and watersheds, and with its effects felt at a regional scale, it calls for irrigation professionals and water resource managers to accurately assess water requirements to meet crop water use. On a multi-crop commercial farm, different factors affect cropland allocation, among which crop evapotranspiration is one of the most important factors regarding the seasonally or annually available water resources for irrigation in combination with the in-season effective precipitation. The objective of the present study was to estimate crop evapotranspiration for four major crops grown on the Navajo Agricultural Products Industry (NAPI) farm for the 2016–2010 period to help crop management in crop plant allocation based on the different objectives of the NAPI. The monthly and seasonal satellite-based ETa of maize, potatoes, dry beans, and alfalfa were retrieved and compared using the analysis of variance and the least significant difference (LSD) at 5% of significance. Our results showed the highly significant effects of year, months, and crops. The year 2020 obtained the highest crop ETa, and July had the most evapotranspiration demand, followed by August, June, September, and May, and the pool of April, March, February, January, December, and November registered the lowest crop ETa. Maize monthly ETa varied from 17.5 to 201.7 mm with an average seasonal ETa of 703.8 mm. The monthly ETa of potatoes varied from 9.8 to 207.5 mm, and their seasonal ETa averaged 600.9 mm. The dry bean monthly ETa varied from 10.4 to 178.4 mm, and the seasonal ETa averaged 506.2 mm. The alfalfa annual ETa was the highest at 1015.4 mm, as it is a perennial crop. The alfalfa monthly ETa varied from 8.2 to 202.1 mm. The highest monthly crop ETa was obtained in July for all four crops. The results of this study are very critical for cropland allocation and irrigation management under limited available water across a large commercial farm with multiple crops and objectives

    Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review

    Get PDF
    Limited water resources coupled with the increase of the human population calls for more efficient use of water in irrigated agriculture. Potato (Solanum tuberosum L.) is one of the most widely grown crops worldwide and is very sensitive to water stress due to its shallow rooting system. With the dilemma of potato sensitivity to drought and limited available water resources restricting crop production, researchers and crop growers have been investigating different approaches for optimizing potato yield and improving crop water use efficiency under different irrigation methods. While potato response to water is affected by other management practices such as fertilizer management, the present review is focused on the potato response to water under different environments and different irrigation methods and the impact on potato quality and potato diseases. Variable results obtained from research studies indicate the non-transferability of the results from one location to another as potato cultivars are not the same and potato breeders are still making effort to develop new high-yielding varieties to increase crop production and or develop new varieties for a specific trait to satisfy consumers exigence. This review is a valuable source of information for potato growers and scientists as it is not only focused on the impact of irrigation regimes on potato yield and water productivity as most reviews on water management, but it also presents the impact of irrigation regime on diseases in potatoes, tuber specific gravity, metabolite content of the tubers and the quality of the processed potato products

    Impacts of cover crops on soil physical properties: Field capacity, permanent wilting point, soil-water holding capacity, bulk density, hydraulic conductivity, and infiltration

    Get PDF
    Field experiments were carried out to quantify the effects of cover cropping on soil physical properties. Field capacity (FC), permanent wilting point (PWP), soil-water holding capacity (SWHC), bulk density ( b), saturated and unsaturated hydraulic conductivity (Ks and Kus, respectively), and infiltration rates were measured and compared for four land cover treatments [cover crop without seed maize (CC), seed maize followed by cover crop (SCCC), bare soil, and seed maize without cover crop (SC)] in three large-scale production fields (~64 ha each) with silt loam soil in the 2012-2013, 2013-2014, 2014-2015, and 2015-2016 cover crop growing seasons. All production fields had been in a maize or soybean and cover crop rotation since 2002 and were farmed with row crops for decades before 2002. Field-measured soil properties in the SCCC treatment were also compared with historical values measured by the USDA-NRCS in 1974. In general, soil physical properties were unaffected by incorporating rotational cover crops into row crop cultivation. No significant differences (p \u3e 0.05) in SWHC were observed between the treatments at any of the periods (seasons). When compared to the 1974 NRCS-measured values for the research fields, overall, the FC, PWP, and as a result the SWHC did not exhibit change at the end of the research in 2016 after cultivating cover crops since 2002. Ks values at the topsoil exhibited interannual variation for the same treatments, but there were no significant differences (p \u3e 0.05) in Ks between land cover treatments neither in any year nor for the same treatment between years. Kus values were not significantly different (p \u3e 0.05) between treatments neither for a given year nor between years. On average, the infiltration rate in the SCCC treatment was about 64% lower than in the SC treatment, indicating that incorporating cover crops into a maize-soybean rotation decreased the infiltration rate. While cover crops could be beneficial for grazing due to their nutritional value, and perhaps other benefits, which depend on numerous factors, in this research there was no sufficient evidence that cover crops can significantly alter the soil physical properties that were investigated in these experimental conditions

    Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate

    Get PDF
    Reference evapotranspiration is very important parameter in the hydrological, agricultural and environmental studies and is accurately estimated by the FAO Penman-Monteith equation (FAO-PM) under different climatic conditions. However, due to data requirement of the FAO-PM equation, there is a need to investigate the applicability of alternative ETo equations under limited data. The objectives of this study were to evaluate twelve mass transfer based reference evapotranspiration equations and determine the impact of ETo equation on long term water management sustainability in Tanzania and Kenya. The results showed that the Albrecht, Brockamp-Wenner, Dalto, Meyer, Rohwer and Oudin ETo equations systematically overestimated the daily ETo at all weather stations with relative errors that varied from 34% to 94% relative to the FAO-PM ETo estimates. The Penman, Mahringer, Trabert, and the Romanenko equations performed best across Tanzania and the South Western Kenya with root mean squared errors ranging from 0.98 to 1.48 mm/day, which are relatively high and mean bias error (MBE) varying from −0.33 to 0.02 mm/day and the absolute mean error (AME) from 0.79 to 1.16 mm/day. For sustainable water management, the Trabert equation could be adopted at Songea, the Mahringer equation at Tabora, the Dalton and/or the Rohwer equations at Eldoret, the Romanenko equation at Dodoma, Songea and Eldoret. However, regional calibration of the most performing equation could improve water management at regional level

    Analyses, calibration and validation of evapotranspirationmodels to predict grass-reference evapotranspiration in theSenegal river delta

    Get PDF
    Study region: Grass-reference evapotranspiration estimation by the Penman-Monteithmethod (PM-ETo) requires a number of climate variables which are not always availableat all weather stations. Different alternative ETo equations have been developed and theirutilization for various local climate conditions requires analyses of their accuracy as com-pared to the standardized Penman-Monteith method. There is a significant lack of data andinformation on this topic in the Senegal River Delta (SRD). Study focus: The objective of this study was to evaluate, calibrate and validate six EToequations ((Trabert, Mahringer, Penman1948, Albrecht, Valiantzas1 and Valiantzas2) forthe SRD. Although all six equations showed good agreement with the PM-ETo (R2\u3e 0.60)for daily ETo estimates, the Valiantzas2 equation was the best model for the Senegal RiverDelta and had the lowest root mean squared difference (RMSE) of 0.45 mm/day and thelowest percent error of estimate (PE) about 7.1%. New hydrological insights for the region: In the case of data limitations, the equationscalibrated in this study are recommended for ETo estimation in the Senegal River Delta. Theresults of this study could be used by agricultural producers, crop consultants, universityresearchers, policy makers for the agricultural, hydrological, and environmental studies aswell as proper allocation and use and forecasting in the SRD where lowland irrigated riceis predominant

    Actual evapotranspiration and crop coefficients of irrigated lowland rice (Oryza sativa L.) under semiarid climate

    Get PDF
    Lowland irrigated rice is the predominant crop produced in the Senegal River Valley characterized by very low annual rainfall, high temperatures, and low relative humidity. The Senegal River is shared by Senegal, Mali, Mauritania, and Guinea, and serves as the main source of irrigation water for the adopted double rice cropping system. Developing appropriate resource management strategies might be the key factor for the sustainability of rice production in the region. This study aims to estimate rice seasonal evapotranspiration (ETa), irrigation water requirement, and to develop rice growth stage specific crop coefficients (Kc) to improve rice water productivity. Field experiments were conducted during the hot and dry seasons in 2014 and 2015 at the AfricaRice research station at Fanaye in Senegal. Irrigation water inputs were monitored and actual crop evapotranspiration was derived using the water balance method. Daily reference evapotranspiration (ETo) was estimated using the Penman-Monteith equation and the weather variables were collected at the site by an automated weather station. The results showed that the ETo during the hot and dry season from February 15th to June 30th varied from 4.5 to 9.9 mm and from 3.7 to 10.8 mm in 2014 and 2015, respectively, and averaged 6.8 mm d-1 in 2014 and 6.6 mm d-1 in 2015. The seasonal irrigation water amount for the transplanted rice was 1110 mm in 2014 and 1095 mm in 2015. Rice daily ETa varied from 4.7 to 10.5 mm in 2014 and from 4.4 to 10.5 mm in 2015 and averaged 8.17 mm in 2014 and 8.14 mm in 2015. Rice seasonal ETa was 841.5 mm in 2014 and 855.4 mm in 2015. The derived rice Kc values varied from 0.77 to 1.51 in 2014 and 0.85 to 1.50 in 2015. Rice Kc values averaged 1.01, 1.31, and 1.12 for the crop development, mid-season and late season growth stages, respectively. The Kc values developed in this study could be used for water management under rice production during the hot and dry season in the Senegal River Valley

    Crop Evapotranspiration, IrrigationWater Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate

    Get PDF
    Under the semiarid climate of the Southwest United States, accurate estimation of crop water use is important for water management and planning under conservation agriculture. The objectives of this study were to estimate maize water use and water productivity in the Four Corners region of New Mexico. Maize was grown under full irrigation during the 2011, 2012, 2013, 2014 and 2017 seasons at the Agricultural Science Center at Farmington (NM). Seasonal amounts of applied irrigation varied from 576.6 to 1051.6 mm and averaged 837.7 mm and the total water supply varied from 693.4 to 1140.5 mm. Maize actual evapotranspiration was estimated using locally developed crop coefficient curve and the tabulated United Nations Food and Agriculture Organization (FAO) crop coefficients, and from this maize water productivity was determined. Maize actual daily evapotranspiration (ETa) varied from 0.23 to 10.2 mm and the seasonal ETa varied with year and ranged from 634.2 to 697.7 mm averaging 665.3 mm by the local Kc curve, from 687.3 to 739.3 mm averaging 717.8 mm by the non-adjusted FAO Kc values, and from 715.8 to 779.6 mm averaging 754.9 mm with the FAO adjusted Kc values. Maize irrigation requirements varied from 758.4 to 848.3 mm and averaged 800.2 mm using the local developed Kc and varied from 835.5 to 935.6 mm and averaged 912.2 mm using FAO Kc. The net irrigation requirement varied from 606.8 to 678.6 using local Kc curve, and from 682.78 to 748.5 mm when adopting the FAO Kc values. Average irrigation requirement was 641 mm under the local Kc option and 730 mm under FAO Kc values option. Maize crop water use efficiency (CWUE) ranged from 1.3 to 1.9 kg/m3 and averaged 1.53 kg/m3, evapotranspiration water use efficiency (ETWUE) values were higher than CWUE and varied from 2.0 to 2.3 kg/m3, averaging 2.1 kg/m3. Maize irrigation water use efficiency (IWUE) was varied with years and averaged 1.74 kg/m3. There were strong relationships between maize CWUE and maize seasonal irrigation amounts of IWUE and the seasonal irrigation amounts with R2 of 0.97 and 0.92, respectively. Maize CWUE increased linearly with maize IWUE with a coefficient of determination R2 of 0.99, while IWUE showed a strong quadratic relationship with ETWUE (R2 = 0.94). The results of this study can be used as a guideline for maize water management under the semiarid conditions in northwestern New Mexico and other locations with similar climate and management conditions. Irrigation requirements for maize should be adjusted to the local meteorological conditions for optimizing maize irrigation requirement and improving maize water productivity

    Effects of Alternate Wetting and Drying Irrigation Regime and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Irrigated Rice in the Sahel

    Get PDF
    The objectives of this study were to investigate water saving strategies in the paddy field and to evaluate the performance of some of the newly released rice varieties. Field experiments were conducted at Fanaye in the Senegal River Valley during two rice growing seasons in 2015. Three irrigation regimes ((i) continuous flooding, (ii) trigging irrigation at soil matric potential (SMP) of 30 kPa, (iii) trigging irrigation at SMP of 60 kPa) were tested in an irrigated lowland rice field. Irrigation regimes (ii) and (iii) are alternate wetting and drying (AWD) cycles. Four inbred rice varieties (NERICA S-21, NERICA S-44, Sahel 210 and Sahel 222) and one hybrid rice (Hybrid AR032H) were evaluated under five nitrogen fertilizer rates (0, 50, 100, 150 and 200 kg N ha-1). The results showed that rice yield varied from 0.9 to 12 t ha-1. The maximum yield of 12 t ha-1 was achieved by NERICA S-21 under AWD 30 kPa at 150 kg N ha-1. The AWD irrigation management at 30 kPa resulted in increasing rice yield, rice water use and nitrogen use efficiency and reducing the irrigation applications by 27.3% in comparison with continuous flooding. AWD30 kPa could be adopted as a water saving technology for water productivity under paddy production in the Senegal River Middle Valley. Additional research should be conducted in the upper Valley, where soils are sandier and water is less available, for the sustainability and the adoption of the irrigation water saving practices across the entire Senegal River Valley
    • …
    corecore