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Abstract: Limited water resources coupled with the increase of the human population calls for more
efficient use of water in irrigated agriculture. Potato (Solanum tuberosum L.) is one of the most widely
grown crops worldwide and is very sensitive to water stress due to its shallow rooting system. With
the dilemma of potato sensitivity to drought and limited available water resources restricting crop
production, researchers and crop growers have been investigating different approaches for optimizing
potato yield and improving crop water use efficiency under different irrigation methods. While
potato response to water is affected by other management practices such as fertilizer management,
the present review is focused on the potato response to water under different environments and
different irrigation methods and the impact on potato quality and potato diseases. Variable results
obtained from research studies indicate the non-transferability of the results from one location to
another as potato cultivars are not the same and potato breeders are still making effort to develop
new high-yielding varieties to increase crop production and or develop new varieties for a specific
trait to satisfy consumers exigence. This review is a valuable source of information for potato growers
and scientists as it is not only focused on the impact of irrigation regimes on potato yield and water
productivity as most reviews on water management, but it also presents the impact of irrigation
regime on diseases in potatoes, tuber specific gravity, metabolite content of the tubers and the quality
of the processed potato products.

Keywords: potato; irrigation; water productivity; disease; quality

1. Introduction

Global potato production is estimated at 370.4 million tons in about 17.34 million
hectares and the production in the Americas was 45.1 million tons in about 1.54 million
hectares; in Europe 107.26 million tons in 4.7 million hectares, in Oceania 1.74 million tons
in 43,303 ha, in Asia 189.81 million tons in 9.30 million hectares, and in Africa 26.53 million
tons in 1.76 million hectares in 2019 [1]. During the 2019 season, potato production across
the United States was 21.22 million tons in about 937,300 hectares [2]. Potatoes are one
of the most water-efficient crops and produce the greatest number of calories per unit of
water input [3–5]. However, water management in potatoes is crucial as potato is one
of the most water stress-sensitive crops due to its shallow rooting system [6–13] and the
sensitivity of the potato foliage characteristics [14–17]. Sustainable water management is
therefore required to optimize potato yield and water use efficiency while maintaining
maximum tuber yield and quality. In this review, we explore study results in relation
to water management options under rainfed, limited, and full irrigation under different
irrigation methods in potato with possible impact on crop yield, water use efficiency, and
the quality of the products. While other management practices might affect the outcome
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of different studies and the results, we are only focusing on water management and its
impacts on potatoes in this review. This review covered the period of 1953–2021 with
more focus on the 1990–2021 period dataset with results of studies across the main potato
production areas such as the United States, Canada, Australia, New Zealand, and Turkey.
Online search engines were used for published results collection from well-known scientific
journals using target keywords.

2. Potato Crop Water Use and Evapotranspiration

Potato water use and evapotranspiration have been investigated by scientists across
the globe and they vary with different factors including the irrigation methods, irrigation
regimes, irrigation technology, local climates, fertilizer management options, and other
management and environmental factors. Potato water demand for high tuber yield de-
pends on climatic conditions and varied from 500 to 700 mm [18]. Haverkort [19] reported
that potatoes water requirement ranged from 400 to 800 mm in Peru. Dimitrov [20] found
potato water use that varied from 380 to 450 mm for optimum tuber yield. Potato evapo-
transpiration increased with irrigation applied rate of 33 to 100% of water requirement that
varied from 316 to 630 mm at Davis, California [21]. Hane and Pumphrey [22] reported
potato water use of 650 mm, while for Sood and Sing [23], the potato water requirement
was estimated at 350–650 mm. Ortega et al. [24] indicated that for production sustainabil-
ity, it is necessary to consider seasonal irrigation amount equivalent to the range from
0.85 to 0.97 of maximum evapotranspiration while considering deficit irrigation for potato
production in the province of Albacete in Spain. Karam et al. [25] found potato seasonal
irrigation amount at 500–560 mm to reach the target yield under deficit irrigation. Under
the Turkey climate conditions, Onder et al. [9] imposed four irrigation regimes as 0, 33,
66, and 100% of full irrigation and found that potato seasonal irrigation amounts varied
from 102 to 302 mm and from 88 to 268 mm in two consecutive growing seasons. Seasonal
water use by potatoes in Saudi Arabia was 1505 mm [26]. Paredes et al. [27] reported
potato seasonal irrigation amount of 330 and 237 mm in two consecutive years under
full irrigation treatment while it was 165 and 118.5 mm under 50% of the full irrigation
treatment under the Mediterranean condition in Southern Italy with seasonal precipitation
of 278 and 181 mm in the respective years.

Potato water use varies with management practices and irrigation levels [28]. Potato
seasonal evapotranspiration was 413.2 ± 15 mm under drip irrigation in a loam soil while
it was 362.1 ± 16 in clay soil in Valenzano, Italy [29]. Parent and Anctil [30] found a rainfed
potato seasonal evapotranspiration to be 331.5 mm in 2007 in South-eastern Canada while
they have reported the historical long-term average rainfed potato evapotranspiration
of 563.3 mm. They reported potato maximum daily evapotranspiration of 6.5 mm/day
and it occurred during the potato tuber bulking. Yactayo et al. [31] found no impact
on tuber yield when applying 50% of full irrigation through partial root-zone drying
compared to full irrigation in Peru. Heritage potatoes (Moe Moe (S. tuberosum L.) and
Tutaekuri (Solanum andigena Juz. and Buk.)) water requirements were 610 and 611 mm
while the modern potatoes (Moon-light and Agria (S. tuberosum L.)) water requirements
were 550 and 491 mm during the 2009–2010 and 2010–2011 seasons in New Zealand,
respectively [32]. In a semiarid area in Gansu Province of China, rainfed potato seasonal
evapotranspiration was a function of soil surface conditions and varied from 216.5 to
249.3 mm, which seems relatively low compared to the findings of other studies [28]. Well-
irrigated potato seasonal evapotranspiration was 445.2 mm in Erzurum-Turkey [33] and
varied from 375.7 to 511.4 mm under arid climate in Iraq [34]. Under hot and dry climates
in Spain, for the potato variety Desirée, evapotranspiration was a function of the applied
irrigation amount and ranged from 150 to 550 mm [35]. Rainfed potato water use was only
195.2 mm in Turkey under the best water management [33].

Erdem et al. [36] reported the seasonal potato actual evapotranspiration (ETa) range as
445–683 mm in semiarid climatic conditions of Turkey. Seasonal actual evapotranspiration
varied from 226 to 473 mm and from 166 to 392 mm when potatoes were subjected to
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full irrigation and 66, 33, and 0% of the full irrigation treatment. Fully irrigated potato
seasonal evapotranspiration was 484 mm in 2009 and 355 mm in 2010 while it is 376 mm
and 295 mm under 50% of full irrigation and the rainfed potato evapotranspiration was
219 mm and 186 mm under the Mediterranean condition in Italy [27]. Similarly, potato
seasonal evapotranspiration varied with irrigation regimes, and the well-irrigated potato
evapotranspiration was 448 mm in 2007 and 411 mm in 2008 in Sicily, Italy [37]. The
findings of Ferreira and Carr [35], Shock et al. [38], Onder et al. [9], and Ati et al. [34] also
relate to an increase in potato evapotranspiration with irrigation regime. Aksic et al. [39]
reported that potato seasonal evapotranspiration varied with irrigation depths and ranged
from 288.1 to 522.1 mm with the lowest value obtained under rainfed conditions while
the highest value was obtained under the well-irrigated treatment. Potato seasonal water
use under different irrigation methods and rainfed conditions across different locations is
summarized in Table 1.

3. Water Management in Potato
3.1. Irrigation Techniques vs. Potato Growth and Yield

Different irrigation methods such as sprinkler, furrow, surface drip, and subsurface
drip irrigation were used under potato production with different results according to the
local climate and soil condition with contrasting outcomes in some studies. Onder et al. [9]
compared surface drip and subsurface drip irrigation coupled with four irrigation regimes
as 0, 33, 66, and 100% of full irrigation and found that irrigation methods did not make
significant differences in tuber yield. However, surface drip irrigation obtained the greatest
water use efficiency and should be recommended under Mediterranean conditions for
potato production [9,40]. Rolbiecki et al. [41] reported a 55% increase in marketable yield
of potato cultivar Courage compared to rainfed production in Poland. Slatni et al. [42]
investigated the effect of alternate furrow irrigation, fixed furrow irrigation, and conven-
tional furrow irrigation and found the average irrigation amounts were 65, 60, and 91 mm,
and the water productivity values amounted to 8.0, 8.7, and 5.9 kg m−3 for the respective
treatments with no yield reduction under the alternate furrow irrigation. Xie et al. [43]
compared conventional furrow irrigation with the partial root-zone drying irrigation sys-
tem at different watering levels and found that applying 50% of the supplementary water
requirement did not affect fresh tuber yield and water use efficiency under both irrigation
methods. Under arid and semiarid conditions and low soil water retention capacity, the
adoption of plastic mulching and drought-tolerant potato cultivars help to achieve high
tuber yield and improve water and fertilizer use efficiency [43].

Sarker et al. [44] compared alternate furrow irrigation, fixed furrow irrigation, and
every furrow irrigation and found that potato tuber yield, tuber quality, and potato water
productivity were affected by alternate furrow irrigation in a raised bed system while
potato yield did not differ significantly between the alternate furrow irrigation and every
furrow irrigation system. Overall, alternate furrow irrigation saved 35% of irrigation water
and significantly improved irrigation water productivity by 50% compared to every furrow
irrigation treatment. The alternate furrow irrigation could be an alternative to every or fixed
furrow irrigation in South Asian countries with limited irrigation water availability [44].
Trout et al. [45] found that Russet Burbank produces better visual quality tuber and much
lower incidence of sugar ends under sprinkler irrigation than under furrow irrigation
due to less water stress, better nitrogen management, and lower soil temperature under
sprinkler irrigation compared to furrow irrigation.
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Table 1. Potato seasonal water use under different irrigation methods and rainfed conditions across different locations.

Locations Seasonal
Precipitation (mm)

Watering
Regime

Irrigation Amount
(mm)

Seasonal Water Use
(mm) Irrigation Method Seasonal ETc (mm) Potato Cultivar Reference

Oregon 649 Sprinkler irrigation 300–655.1 Russet Burbank Hane and Pumphrey [22]
India 350–650 Sood and Sing [23]

Lebanon 562.9–638.3 Drip irrigation 490–622 Agria Karam et al. [25]
Turkey 142–512 Irrigated 88 to 302 244–780 Drip irrigation 166–473 Marfona Onder et al. [9]

Saudi Arabia Irrigated 783–1505 783–1505 Drip irrigation El-Abedin et al. [26]
Italy 181–278 Irrigated 118.5–330 299–608 Drip irrigation 295–484 Spunta Paredes et al. [27]
Italy 171–282 Rainfed 186–219 Spunta Paredes et al. [27]
Italy Irrigated 413.2 ± 15 Drip irrigation 322.2–447.9 Spunta Katerji et al. [29]

Canada 350.6 Rainfed 331.5 Reba Parent and Anctil [30]
Peru Desert with 23 mm Irrigated 102.3–222.5 Furrow UNICA Yactayo et al. [31]

New Zealand 294.6–421.6 Irrigated 189.4–196.4 491–550 Sprinkler irrigation 491–611 Agria, Moonlight,
Moe Moe, Tutaekuri

Fandika et al. [32]
New Zealand Rainfed 491–550 Fandika et al. [32]

China 150.9–208.2 Rainfed 150.9–208.2 216.5 to 249.3 Kexin 1 Chen et al. [28]
Turkey 59.3–156.7 Rainfed 195.2 167.7–222.6 Kiziloglu et al. [33]
Turkey 59.3–156.8 Irrigated 445.2 Surface irrigation up to 475.2 Granola Kiziloglu et al. [33]

Iraq 7.4 300–447 307.4–455.4 Furrow & drip irrigation 375.1–511.4 Bowren Ati et al. [34]
Portugal - - 150 to 550 Desirée Ferreira and Carr [35]
Turkey 50–111 Irrigated 293–675 404–626 Furrow & drip irrigation 464–683 Erdem et al. [36]

Italy 170–196 Irrigated 25–191 195–382 Drip irrigation 155–448 Spunta Ierna and Mauromicale [37]
Ontario, Oregon Irrigated 368–588 368–589 Sprinkler irrigation - Russet Shock et al. [38],

Serbia 222.7–231.2 Irrigated 175–278 39,717–509.2 Drip irrigation 449.2–522.1 Kennebec Aksic et al. [39]
Serbia 222.7–231.3 Rainfed 222.7–231.3 - 288.1–294.4 Kennebec Aksic et al. [39]
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3.2. Impact of Irrigation Regime on Potato Growth and Yield

Potato plants have a shallow rooting system which makes them very sensitive to water
stress, requiring proper water management to avoid putting potato plants under drought
conditions [6,8,9,11,12]. For potato production sustainability, moisture should be kept
above 50% of the total available water of the site soil [46]. Jensen et al. [47] reported that 30%
was the water-saving limit compared to the field capacity. Camargo et al. [48] suggested that
applying 80 to 100% of irrigation requirements helps to achieve high biomass accumulation.
Potato growth, yield, and yield component are affected by irrigation regimes mostly tuber
bulking and ripening which are the water stress-sensitive stages [49]. Foti et al. [50] reported
no significant yield difference between 100 and 66% of maximum evapotranspiration
irrigation regimes on potato tuber yield while they obtained the highest tuber yield with
133% maximum evapotranspiration water supply. In contrast, Karafyllidis et al. [51]
obtained the highest potato yield under 65% of maximum evapotranspiration. Iqbal
et al. [52] reported that the potato growing stage is the least sensitive to water stress. Deficit
irrigation strategies aim to expose crops to a certain level of water stress during either a
particular growth stage or during the crop growing season with a non-significant impact on
crop yield [53]. Fresh potato yield and total dry matter accumulation increase with water
supply [48,54–57]. Potato tuber number per plant and total yield increase with adequate
irrigation water management before and during tuber initiation [58–60] and the proper
irrigation management after tuber initiation increases the size of tubers [61–65]. During a
two-year experiment in the Central Bekaa Valley of Lebanon, Karam et al. [25] found the
full irrigation treatment to overcome deficit irrigation at tuber bulking and tuber ripening
by 12 and 43%, in the first year and 11 and 39% in the second year, respectively. Similarly,
Fabeiro et al. [66] reported potato yield reduction under deficit irrigation during potato
growth, tuber bulking, and ripening stages while the larger tubers were obtained under the
fully irrigated potato and the ripening stage deficit irrigation, and the smallest tubers were
obtained under the applied deficit irrigation during the growth period with a high tuber
number per plant. Deblonde and Ledent [14] reported a 17% reduction in potato tuber
number of six cultivars affected by water stress at Nodebais, Belgium, with no impact on
the yield due to compensation by average tuber dry weight. Brocic et al. [67] reported yield
reduction of potato cultivar Liseta under 70% partial root-zone irrigation and silty–clay
soil compared to the full irrigation. Karam et al. [25] found a 12% and 42% reduction in
potato marketable yield when deficit irrigation was imposed at tuber bulking and tuber
ripening, respectively, compared to the well-irrigated treatment. Yield loss under deficit
is compensated by an increase in tuber dry matter [25,55]. Yuan et al. [68] reported that
potato fresh tuber and marketable yield increased with increasing irrigation regimes. Miller
and Martin [69] reported that daily irrigation improved total tuber yield, the number of
tubers, and the specific gravity compared to four-day interval irrigation. Byrd et al. [70]
showed the potential for reduced irrigation management for sustainable potato production
in Florida. Camargo et al. [48] found 80% of irrigation requirements showed statistically
similar yields to 100 and 120% of irrigation requirements in Aguas Nuevas, Spain.

Comparing deficit irrigation and partial root-zone drying with full irrigation, El-
Abedin et al. [26] found that the deficit treatment and partial root-zone drying decreased
potato fresh and dry tuber yield compared to the full irrigation with no difference between
the treatments for the number of marketable size tubers while the number of oversized
tubers was significantly lower under the partial root-zone treatments than under the
full irrigation treatment. They indicated that the highest number of tubers per plant was
obtained under full irrigation treatment and the deficit irrigation at 50% of the full irrigation
treatment produced 51%, 72.8%, and 136.9% more tubers than the deficit irrigation at
70%, partial root-zone drying at 70% and partial root-zone drying at 50%, respectively.
Karam et al. [25] reported that 50% of tuber yield was constituted with the large size
potatoes (>200 g) under the full irrigation treatment while that proportion was 48% under
the deficit irrigation at tuber bulking and 46% under deficit irrigation at tuber ripening. A
larger number of small tubers was obtained when deficit irrigation was applied during the
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tuber bulking stage compared to the tuber ripening state. Wang et al. [71] reported that
potato tuber yield, largest tuber weight, commodity tuber weight, dry matter accumulation,
and vitamin C content increased with the increase in the fertilizer application rate and the
dripper discharge rate. Elhani et al. [72] also demonstrated that tuber yield penalty was
similar under partial root-zone drying compared to deficit irrigation. These management
approaches may be used by potato seed producers for increasing the number of potato
seeds per plant.

3.3. Potato Water Production Function

Linear relationships were developed between potato yield and the seasonal evap-
otranspiration with different regression slopes and different intercepts under different
environments [37,66,68]. These regression relationships were impacted by the management
practices, potato cultivars, and fertilization. Cappaert et al. [60] indicated that the greatest
effect of the irrigation management during the potato tuber ripening stage is shown by the
magnitude of the coefficient of the applied irrigation amount during ripening (w3) within
the linear production function. Kiziloglu et al. [33] found a linear relationship between
potato yield and crop evapotranspiration with an R2 of 0.94 in Turkey. A similar relationship
was reported by Islam et al. [73], Unlu et al. [74], Ayas and Korukçu [75], Cantore et al. [76],
and Camargo et al., [48]. Unlu et al. [74] reported a difference in the regression slopes
between the sprinkler and trickle irrigation systems with high water productivity under
sprinkler irrigation than under trickle irrigation in Turkey. In contrast, Aksic et al. [39]
reported a quadratic relation between potato yield and crop evapotranspiration in Serbia.

Linear production function was developed by Fabeiro et al. [66] where potato cultivar
Agria tuber yield is a function of the amount of irrigation applied (wi) during potato growth
(w1), tuber bulking (w2), and ripening (w3) stages in Spain [yield = 44.65 w1 + 17.14 w2
+ 242.41 w3; R2 = 0.993]. The same authors also reported quadratic relationship between
tuber yield and the seasonal applied water (w) [yield = 38.067 − 0.0087 w + 0.000001639 w2;
R2 = 0.742]. Ross [77] found a cubic polynomial relationship between potato yield and
the seasonal applied irrigation water amount. Badr et al. [78] found a linear relationship
between potato tuber yield and the seasonal water supply with a quite high R2 value of
0.973 and a regression slope of 92 kg/ha for unit mm of applied water. Yuan et al. [68]
reported a quadratic relationship between potato yield per plant and the irrigation water
supply (w) with R2 of 0.98 [yield = −0.0092 w2 + 7.52 w − 409.47]. Karam et al. [25] found a
strong quadratic relationship between fresh potato tuber yield (Cultivar Agria) (kg/ha) and
the seasonal applied irrigation amount w (mm) with R2 value of 0.82 [yield = −0.9277 w2 +
1184.3 w − 314,999.9; R2 = 0.82].

Overall, potato yield has a strong linear relationship with crop seasonal evapotranspi-
ration while it has a polynomial relationship with the seasonal applied irrigation amounts.
However, these relationships may greatly vary in terms of the linear regression slopes,
the intercepts, the constants within the polynomial, and the coefficient of determination
as influenced by crop management practices, irrigation methods and scheduling, potato
genotypes, soil types, climatic conditions, and other factors.

3.4. Potato Water Use Efficiency (WUE)

Potato has been reported to have a high water use efficiency (WUE) among the major
food crops and which varied from 6 to 11.6 kg/ha/m3 [4]. However, potato WUE strongly
depends on the genetic material, management practices, irrigation regime, fertilizer rate,
and other environmental conditions. Modern potatoes have high WUE, but they are not
as economically productive under the same volume of water as heritage potatoes [32].
Deficit irrigation strategies in crops are revealed to optimize crop WUE [79–84]. On-
der et al. [9] reported potato irrigation water use efficiency (IWUE) that varied from 9.33 to
36.44 kg/ha/m3 under surface drip irrigation and from 9.05 to 30.12 kg/ha/m3 with the
greatest IWUE obtained by treatment 33% of maximum evapotranspiration. The total water
productivity varied from 6.17 to 14.01 kg/ha/m3 [9]. Yactayo et al. [31] reported an increase
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in potato water use efficiency with an early partial root-zone drying, initiated 6 weeks after
planting, with a watering level equivalent to 50% of full irrigation, with no yield reduction
compared to fully irrigated potato in Peru. Potato economic water use efficiency, which is
the reflection of marketable yield, varies with cultivars, irrigation regimes fertilization [32].
Ahmadi et al. [85,86] reported a significant decrease in potato IWUE under the partial
root-zone drying (31–41%) compared to the full irrigation treatment. Fandika et al. [32]
found potatoes WUE varying from 5.2 to 11.8 kg/ha/m3 under irrigation, from 9.0 to
12.9 kg/ha/m3 under rainfed production and was 8.3 kg/ha/m3 under 80 kg N/ha and
7.0 kg/ha/m3 under 240 kg N/ha in New Zealand. WUE decreased therefore with in-
creasing irrigation regimes and increasing nitrogen applied rates. Paredes et al. [27] also
found an increase in the IWUE under 50% deficit irrigation compared to the full irrigation
treatment. They pointed to large IWUE differences between irrigation treatments as also
shown by Trebejo and Midmore [87] and Ahmadi et al. [88] however, the differences were
small between treatments when the seasonal precipitation, total water supply, and seasonal
crop evapotranspiration were considered [27,42,89]. Chen et al. [28] indicated that straw
strips mulch on furrows improved rainfed potato WUE by up to 74.8% and yield from
36.6 to 61.2% in Dingxi City, Gansu Province, China. El-Abedin et al. [26] found a reduction
in potato irrigation water use efficiency (IWUE) by 33.8 and 36.1% under partial root-zone
drying 70 and 70% compared to the full irrigation in 2014, respectively, while the reduction
was 26.6 and 46.6% under the respective treatments in 2015. They also found that deficit
irrigation at 70 and 50% of the full irrigation also decreased potato IWUE by 18.94 and
22.19%, respectively one year over two. However, the deficit irrigation a 70 and 50% of the
full irrigation treatment showed higher IWUE (5.80 and 6.30 kg/ha/m3) than the partial
root-zone drying technology at the same rates (4.41 and 3.21 kg/ha/m3). The improvement
in IWUE under deficit irrigation compared to the partial root-zone drying was reported
by Liu et al. [90]. Kriedmann and Goodwin [91] indicated that yield maintenance and
IWUE improvement are the advantages of the partial root-zone drying technology over the
regular deficit irrigation strategy. Partial root-zone drying has improved potato IWUE in
the United Kingdom [92]. Under arid and semiarid climates, the duration of the wet/dry
cycling in the partial root-zone drying decreases, and the crop is not exposed to extreme and
severe water stress compared to the classic deficit irrigation [26,93]. Moreover, the partial
root-zone drying practice should be started five to six weeks after tuber initiation [31,82,94].
In contrast, Shahnazari et al. [95], Ahmadi et al. [85] and Jovanovic et al. [96] reported
higher potato IWUE under the partial root-zone drying than under deficit irrigation. Potato
yield was similar under partial root-zone drying, deficit irrigation, and full irrigated potato
while the partial root-zone drying and the deficit irrigation improved IWUE by 60% with
30% of the irrigation water saving in Denmark. Similarly, Liu et al. [97] found no potato
yield improvement and IWUE under partial root-zone drying compared to the classic
deficit irrigation. El-Abedin et al. [26] indicated that the contrasting results might have
resulted from differences in the experiment set up, potato cultivars, climate, soil types, root
distribution, and soil water balance.

3.5. Impact of Irrigation on Diseases in Potatoes

Potatoes are grown under different irrigation methods as surface irrigation, drip irri-
gation, and sprinkler irrigation. Irrigation management is critical for the management of
fungal and bacterial diseases in potato crops such as hallow heart, late blight, early blight,
while mold, bacteria stem rot, early drying, bacterial ring rot, etc. High and continuous
humidity within potato crop canopy is favorable for pathogen germination and growth,
reproduction, dispersal, and survival [98]. Irrigation can ‘create a favorable environment
for potato soil-borne diseases such as Rhizoctonia canker and black scurf (Rhizoctonia solani),
common scab (Streptomyces scabiei), powdery scab (Spongospora subterranea f. sp. Subter-
ranean), white mold (Sclerotinia sclerotiorum), silver scurf (Helminthosporium solani) pink rot
(Phytophthora erythroseptica) and Verticillium wilt (Verticillium dahlia). Sprinkler irrigation,
an overhead irrigation method creates high humidity on the potato leaves and within the
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canopy, creating a micro-climate favorable to the development of potato foliage diseases
such as early blight, late blight, bacterial stem rot, and white mold. It is therefore important
to allow foliage to dry between irrigation and late afternoon and early evening irrigation
events keep leaves wet during the night, which may increase the potential of occurrence of
late blight, should be avoided [99]. While drip irrigation is usually assessed as water-saving
technology, it has limited potential to create favorable conditions for potato foliar diseases.
In contrast, recurrent mite infestations may increase mostly under subsurface drip-irrigated
potato production. Menzies [100] reported that sprinkler irrigation increases the occurrence
of fungal and bacterial folial diseases. During the planting-sprouting stage, irrigation may
increase soil moisture content while the potato seeds have enough moisture to support
sprouting to emergence. Any irrigation event during that stage will decrease soil aeration
to a level that is favorable to several pathogens, most notable bacterial soft rot or black
leg (Erwinia carotovora), and stem and stolon canker (Rhizoctonia solani) development [101].
Rupp and Jacobsen [102] suggested avoiding over-irrigation to control aerial stem rot and
early blight and recommended the use of less frequent irrigation with longer duration
and early day irrigation to allow for drying to occur later in the day, and no irrigation
should occur in cool cloudy conditions. Alternaria brown spot known as brown leaf spot
caused by the fungus Alternaria alternata, is more severe with overhead irrigation. The
soft bacterium is spread by irrigation, splashing water, or insects. In contrast, the potato
common scab (Streptomyces scabies) on the potato cultivar Russet Burbank was controlled
by maintaining soil moisture content above 90% of the total soil available water during six
to nine weeks. Olanya et al. [103] have compared the microclimate created by sprinkler irri-
gation, surface drip irrigation, and subsurface drip irrigation on Russet Burbank potato in
Maine (USA) and found that the irrigation application method did not consistently impact
microclimatic parameters associated with late blight development. Larkin et al. [104] found
an increase in potato back surf caused by Rhizoctonia solani and common scab caused by
Streptomyces scabiei under irrigated treatment compared to rainfed treatment. However,
previous research showed that irrigation during the six weeks following tuber initiation
tends to reduce common scab in potatoes [105,106]. Davis and Everson [107] reported more
severe Verticillium wilt in potato under furrow irrigation than under sprinkler irrigation.
Irrigation can also be used in combination with pesticides as chemigation to control foliage
pests in potatoes if the product is allowed chemigation.

Diverse diseases in potatoes are transmitted by mostly phytophagous pests feeding
on the vascular system of the potato plant. For example, the potato psyllid (Bactericera
cockerelli) is one of the most important pests in potatoes (Solanum tuberosum L.) due to its
feeding behavior and the transmission of a bacterium (Candidatus Liberibacter solanacearum)
that causes zebra chip disease, altering the quality of the potato tuber and the fried potato
chips or French fries [108–112]. Aphids especially the green peach aphid (Myzus persicae)
and Potato aphid (Macrosiphum euphorbiae) transmit potato leafroll virus which reduces
marketable potato yield causing phloem net necrosis, a brown discoloration inside the
potato that reduces quality and other viruses cucumber mosaic and alfalfa mosaic (calico)
inducing a wide variety of foliar and tuber symptoms, leading to severe yield reduction
and loss of tuber quality [113,114]. Myzus persicae, Rhopalosiphum padi, Aphis fabae, and
others are well known to transmit Potato Virus Y (PVY) which impacts potato yield and
quality [115,116]. When aphids’ infestation occurs, irrigation should be stopped to allow
slow dehydration of potato foliage and desiccation which triggers wind formation in
aphids and stimulus for flights [117]. However, this should be the last option as reducing
and stopping irrigation may be detrimental to potato tuber yield and quality.

Spider mites are basically abundant under severe drought and hot conditions and they
colonize stressed plants under poorly managed irrigation scheduling [118]. Mites Tetrany-
chus urticae and Polyphagotarsonemus latus (Arachnidae: Trombidiformis, Tarsonemidae)
are polyphagous and can build high populations in a very short time during the hot dry
season when the air temperature is above 30 ◦C. The fungal potato pathogen Streptomyces
spp is associated with mite and causes scab in potatoes [119]. Besides the chemical control,
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sprinkler irrigation helps to limit mite damage by increasing the humidity on plant leaves
(>60%).

The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) is
a major pest in potatoes that feed on potato leaves with less significant yield lost and
tuber infestation reduces the marketable yield. The larvae mine leaves, stems, petioles, and
excavate tunnels through potato tubers, which is considered the typical damage. Insecticide
application is the main method used to control the pest however, cultural practices such as
irrigation management are used for sustainable management. Meisner et al. [120] reported
that the female moths prefer dry soil for oviposition and the larvae survival increases with
low soil moisture content [121]. It is therefore important to keep soil moisture high through
sprinkler irrigation and avoid cracks in the soil mostly during the late-season stage with
vine senescence, and after vine kill. Rondon et al. [122] and Clough et al. [123] suggested
that applying 2.5 mm/day through a center pivot irrigation system from vine kill to harvest
decreased P. operculella tuber damage and did not increase fungal or bacterial diseases.
Table 2 summarizes some irrigation management favoring diseases in potatoes and other
water management to reduce the impact of the diseases.

Table 2. Irrigation management favoring diseases in potatoes and irrigation practices to reduce the impact of the diseases.

Disease Pathogen Favorable Conditions Irrigation Practices to
Reduce the Diseases Reference

fungal and bacterial
folial diseases. Fungi and bacteria High-frequency sprinkler

irrigation

Less frequent high rate
irrigation and early day

irrigation
[100]

bacterial soft rot or
black leg Erwinia carotovora Irrigation during Planting

-sprouting stage
No irrigation during

Planting-sprouting stage
[101]

stem and stolon canker Rhizoctonia solani [101]

aerial stem rot

Phytophthora nicotianae,
Pectobacterium

carotovorum,
Pectobacterium

atrosepticum, Dickeya
dianthicola

Sprinkler over-irrigation,
dense canopies, excessive

nitrogen fertilization

Avoid over-irrigation, use
less frequent irrigation,
with longer durations.

Early day irrigation

[102]

Potato comment scab Streptomyces scabies over-irrigation
Soil moisture content >
90% total soil available

water during 6 to 9 weeks
[102]

Ring rot Clavibacter michiganensis Drought and heat stress Keep surfaces wet [102]

Alternaria brown spot Alternaria alternata Overhead irrigation Avoid irrigation in cool,
cloudy conditions [102]

Early blight Alternaria solani Overirrigation Avoid over-irrigation,
allow leave to fully dry [102]

Late blight Phytopthora infestans Overhead irrigation during

Monitor irrigation so that
leaves dry during the day,

avoid excessive
fertilization

[102,103]

Potato back Rhizoctonia solani Irrigated cropping regulated deficit irrigation [104]

Common scab Streptomyces scabiei Irrigated cropping

Safe deficit irrigation,
irrigation during the

6 weeks following tuber
initiation

[104–106]

Verticillium wilt Verticillium dahliae Furrow irrigation
Sprinkler irrigation,

irrigation management
prior to tuber initiation)

[107]

Zebra chip Candidatus Liberibacter
solanacearum Bactericera cockerelli

Stop irrigation for leaf
dehydration and

desiccation
[108–112]
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Table 2. Cont.

Disease Pathogen Favorable Conditions Irrigation Practices to
Reduce the Diseases Reference

PVY Potato virus Y
Myzus persicae,

Rhopalosiphum padi,
Aphis fabae

Stop irrigation to allow
slow dehydration of potato

foliage and desiccation
[113–117]

Tetranychus urticae,
Polyphagotarsonemus

latus

Drought and heat stress
(temperature > 30 ◦C)

Sprinkler irrigation helps
to limit mite damage [118]

scab in potatoes
associated with mites Streptomyces spp Drought and heat stress

(temperature > 30 ◦C)
Sprinkler irrigation helps

to limit mite damage [119]

3.6. Impact of Irrigation Regime on Potato Specific Gravity and Chemical Content of the Tubers

Specific gravity is one of the characteristics of potato tuber, and determinant for
harvest quality. It is a measurement of the starch or solids content relative to the water
content in a potato. High dry matter content is a synonym of low water content and vice
versa. It is used by the potato industry for harvest storability, fry quality appreciation,
and baking characteristics. Miller and Martin [69] reported that daily irrigation increased
potato specific gravity compared to four-day interval irrigation. Yuan et al. [68] indicated
that specific gravity tended to decrease with increasing irrigation depth. In contrast,
water stress in potato improves the chip quality due to the higher content of tuber dry
matter [124]. However, Hang and Miller [125] and Shock et al. [65] indicated that deficit
irrigation trended to decrease tuber specific gravity. Similar findings were reported by
Waddell et al. [126] who found that the specific gravity of tubers from the relatively stressed
treatments was significantly lower than the specific gravity of tubers from the well-irrigated
treatment under sprinkler irrigation. Poter et al. [127] found that tuber-specific gravity
decreased with increasing irrigation rates while Drewitt [128] reported an increase in
specific gravity with an increase in irrigation frequency. Early appropriate stages irrigation
increases tuber dry matter and continuous or late-season irrigation can reduce potato
dry matter content [129]. Peterson and Weigle [130] indicated that tuber specific gravity
increased under mist irrigation conditions. Reduction in tuber-specific gravity associated
with late-season irrigation was reported by Silva et al. [131]. After wine kill, tuber specific
gravity decreases with desiccation [132,133].

Studies have revealed that irrigation management can affect the quality of the produc-
tion and the chemical composition of tubers during the storage period which is particularly
critical for the chip potato industry. Potato dry weight is constituted mainly by starch
and small quantities of sugars, fiber, protein, and ash. Potato tuber content in sucrose,
glucose, and fructose are important factors affecting the color of the processed products
such as French fries and chips in potatoes [134,135]. Jovanovic et al. [96] pointed that the
partial root-zone drying irrigation management results in a slight reduction in soluble
sugar content and an increase in starch, nitrogen, and antioxidant contents of potato tubers.
Sarker et al. [44] found potato soluble sugar also varied significantly between the alternate
furrow irrigation and every furrow. Eldredge et al. [64] found an increase in potato tuber
sugar content promoted by drought stress. Comparing partial root-zone drying to deficit
irrigation, Elhani et al. [72] reported a decrease in potato tuber sugar and protein content
with the increase in water stress with higher values in partial root-zone drying than in
deficit irrigation treatment as shown by Battilani et al. [136]. Adversely, the polyphenols
and antioxidants amount increased in potato tubers with increasing water stress on potato
plants. There was also higher metabolite content in potato tubers under partial root-zone
drying than under deficit irrigation with less decrease in glucose and fructose concentra-
tions and with double the amount of mannitol [72]. In contrast, Elhani et al. [72] found
that tuber content in glucose and fructose gradually decreased with decreasing seasonal
water supply and similar findings were reported by Wegener et al. [137] who reported
a decrease in total sugars, glucose, and fructose with increasing water stress in potatoes.
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The inconsistency of the effect of the drought stress on the sugar content of the tubers is
genotype/cultivar dependent [138,139].

Protein content in the potato tubers is an important nutritional characteristic [140]
and is usually impacted by the irrigation regime and plant nitrogen fertilizer uptake and
remobilization. Plant nitrogen content decreases under drought conditions [141]. However,
Elhani et al. [72] reported an increase in potato tuber protein content under the partial
root-zone drying treatment, and which might have been possible due to the increase in
nitrogen mineralization with the increase of the frequency of the wet/dry cycles [47,142] or
the promotion of nitrogen uptake [143].

Polyphenols are the other main constituents of potatoes which are influenced by
crop water management. Hamouz et al. [144] found that the polyphenols contents were
increased under drought stress compared to the well-irrigated treatment under extreme
temperature. Elhani et al. [72] reported an increase in tuber polyphenols content with
an increase in water stress. This phenomenon is due to the alteration of sucrose flux
induced by water stress which changes the expression of the responsible polyphenol
synthesis genes [138]. Andre et al. [138] indicated that there is a correlation between
diverse polyphenolic profiles and the variations in gene expression profiles and the drought-
induced variations of the gene expression were highly genotype-specific. Some potato
tuber quality indexes as impacted by management practices are summarized in Table 3
with the best water management practice to reduce the induced unfavorable quality.

Table 3. Potato tuber quality as impacted by management practices.

Quality Index Trend Cause Best Practices Reference

Specific gravity Decrease Four-day irrigation scheduling Daily irrigation Miller and Martin [69]
Specific gravity Decrease High irrigation rate Meet crop ETc Yuan et al. [68]
Specific gravity Meet crop ETc [124]
Specific gravity Decrease Deficit irrigation Meet crop ETc Hang and Miller [125]
Specific gravity Decrease Deficit irrigation Meet crop ETc Shock et al. [65]
Specific gravity Decrease Drought Meet crop ETc Waddell et al. [126]
Specific gravity Decrease Increasing irrigation Meet crop ET Poter et al. [127]
Specific gravity Increase High irrig. frequency Drewitt [128]

Specific gravity Decrease Continuous late irrigation Reduce irrigation frequency
late season [129,131]

Specific gravity Increase Mist irrigation Peterson and Weigle [130]
Specific gravity Decrease Desiccation after wine kill Light irrigation after Wine kill [132,133]
Sugar content Reduce PRZDI Meet crop ETc Jovanovic et al. [96]
Sugar content Reduce Alternate Furrow Every furrow Sarker et al. [44]
Sugar content Increase Drought Eldredge et al. [64]
Sugar content Decrease Drought Meet crop ETc Elhani et al. [72]
Sugar content Decrease Deficit irrigation PRZDI Battilani et al. [136]

Metabolite Mannitol
content Increase Deficit irrigation Meet crop ETc Elhani et al. [72]

Sugar contents Decrease Water stress Meet crop ETc [72,137]
Sugar Ccontent Inconsistent genotype/cultivar dependent [138,139]
Protein content Decrease Drought Meet crop ETc [141].
Protein content Increase PRZDI [47,72,142,143]

Polyphenols Increase Drought Meet crop ETc [72,144,145]
Sugar end/called dark

ends Increase Heat, drought Meet crop ETc [59,146–154]

Sucrose Increase Water stress Meet crop ETc Thompson et al. [150]
phenyl-propanoids Increase Drought Meet crop ETc [155–158]

Sugar end/called dark
ends Increase Excessive nitrogen fertilizer Meet crop need [155,156]

Sugar end/called dark
ends Increase Inadequate phosphorus

fertilizer Meet crop need [157]

Stem end Significant Water stress Meet crop ETc Eldredge et al. [64]

In summary, the impact of irrigation water management on the potato chemical
content might be genotype-dependent, however, more collaborative research involving
potato breeders, geneticists, crop physiologists, and agronomists should be conducted
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under severe and medium drought stress and under different climates conditions to
determine the factors affecting potato tubers chemical contents and the influencing factors.

3.7. Impact of Irrigation Regime on the Potato Fries and Chips

Sugar end, also called dark ends, jelly ends, translucent ends and glassy ends [145–149],
are the results of physiological disorder in potato under stress conditions with an increase
in sugar content in the basal end of the tuber and low starch content. At fry, the processed
product presents one dark end and is not appreciated by the consumers. Sugar end can
be detrimental for potato growers. Thompson et al. [150] reported that stressed plants
accumulate large amounts of sucrose in the basal tissues of the tuber immediately following
stress and continue producing adequate amounts of assimilation to support tuber growth.
Heat stress and water deficit are the factors that induce changes in the activities of certain
key carbohydrate metabolizing enzymes shifting the tuber from a starch synthesizing
function to one of starch mobilization [59,146,148,150–154]. Under drought conditions,
reactive oxygen species can arise and lead to oxidative damage within the cells with an
increase in the production of metabolites such as phenyl-propanoids with antioxidant
properties, able to scavenge reactive oxygen species [155–158]. Late embryogenesis of
abundant proteins and heat proteins is the protection mechanism in drought stressed
potato [72,139,159–165] with an accumulation of osmolytes derived from amino acids or
carbohydrates [164,166–168]. These amino acids cause a bitter and astringent taste called
egumi-taste in cooked or processed potato tubers [169]. Other studies have shown that
excessive nitrogen fertilizer rates [170,171] and inadequate phosphorus fertilizer [172] are
other factors of the sugar end in potatoes. Eldredge et al. [64] found a significant darkening
in the average stem-end fry color light reflectance of water-stressed Russet Burbank tubers
at harvest and during the post-harvest period. Water deficits in potatoes throughout
the growing season decreased photosynthesis and assimilate remobilization [173] and
consequently fry potato presents pronounced sugar end while it was moderated when
plants are subjected to a short duration of water stress [65].

3.8. Best Irrigation Management in Potatoes

From the aforementioned research results, water management in potato appears not
straightforward. Irrigation management in potatoes like other crops should follow princi-
ples of plant-water relationships, irrigation scheduling, monitoring soil moisture across
potato root zone throughout the growing season, relationship irrigation and potato growth
stages, and considering irrigation and common scab and other characteristics of the product
for the target market. Best water management practices must take into account environmen-
tal sustainability and economic profitability. For accuracy of irrigation matching crop actual
evapotranspiration, potato growers need to learn at least one way to measure or estimate
crop evapotranspiration, follow trends in soil moisture content and or soil water matric
potential, and keep track of soil water storage and crop evapotranspiration [174]. The first
option is to meet crop water requirement which depends on crop growth stages, crop envi-
ronment, and other management practices. The guidelines proposed by Allen et al. [175]
are a great tool for estimating crop evapotranspiration using local weather data and the
adjusted proposed crop coefficients to potato height [27,176–178]. Potato is considered to
be extremely sensitive to water stress during the tuber initiation and tuber bulking stages
and any water deficit during these stages will affect crop yield and quality and the net
economic return of the production system. Different available soil moisture sensors could
be used for real-time soil storage management that helps to avoid water stress on the potato
plant anytime the triggering point or the lower soil storage threshold is reached. Potato
growers should consider 60 cm as the maximum potato plant root zone in the irrigation
depth estimation and assure uniform water distribution. Under limited water availability,
deficit irrigation is a great option for increasing potato water use efficiency however, the
threshold should be set according to the soil type, water availability, and economic profit
targets. In arid and semiarid conditions with hot air temperatures, it is recommended
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to use an overhead irrigation system to limit mite infestation. Crop producers should
refer to extension agents and or crop consultants or university researchers with any doubt
about any uncommon phenomenon observed on the plants in their field for advice and
problem-solving.

4. Conclusions

This review explored the effects of irrigation management on potato yield and quality,
production function, diseases, and pests in potatoes. While targeting one objective can lead
to other problems, potato growers should be aware of the contrasting results. However,
the best irrigation management practices should be adopted to optimize the production
system as suggested by Shock et al. [154]. Potato is a shallow-rooted crop and very sensi-
tive to water stress. Basically, irrigation depth should match for evapotranspiration and
any over-irrigation may promote the occurrence of diseases while water stress results
in tremendous yield reduction and alters the profitability of the production system. To
cope with climate change and production sustainability, smart and precision irrigation is
recommended. Different decision tools are available to assist potato growers to achieve
profitable and sustainable potato production. However, multidisciplinary studies including
but not limited to agronomists, crop physiologists, irrigation engineers, potato breeders, en-
tomologists, environmental engineers and pathologists, and economists may be conducted
for an integrated approach to improve potato productivity and system sustainability under
different climatic conditions.
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