1,609 research outputs found
SDSS White Dwarf mass distribution at low effective temperatures
The DA white dwarfs in the Sloan Digital Sky Survey, as analyzed in the
papers for Data Releases 1 and 4, show an increase in surface gravity towards
lower effective temperatures below 11500 K. We study the various possible
explanations of this effect, from a real increase of the masses to
uncertainties or deficiencies of the atmospheric models. No definite answer is
found but the tentative conclusion is that it is most likely the current
description of convection in the framework of the mixing-length approximation,
which leads to this effect.Comment: to appear in the proceedings of the 16th European Workshop on White
Dwarfs, Barcelona, 200
Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS
For a long time, no hydrogen-deficient white dwarfs have been known that have
effective temperature between 30 kK and < 45 kK, i.e. exceeding those of DB
white dwarfs and having lower ones than DO white dwarfs. Therefore, this
temperature range was long known as the DB-gap. Only recently, the SDSS
provided spectra of several candidate DB-gap stars. First analyses based on
model spectra calculated under the assumption of local thermodynamic
equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK
(Eisenstein et al. 2006). It has been shown for DO white dwarfs that the
relaxation of LTE is necessary to account for non local effects in the
atmosphere caused by the intense radiation field. Therefore, we calculated a
non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our
results confirm the existence of DB-gap white dwarfs.Comment: 4 pages, 2 figures, to appear in: Proceedings of the 16th European
Workshop on White Dwarf
Mode identification of Pulsating White Dwarfs using the HST
We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV
stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the
Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to
the optical pulsation amplitude and determine the pulsation indices. We find
that for essentially all observed pulsation modes, the amplitude rises to the
ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do
not find any pulsation mode visible only in the ultraviolet, nor any modes
whose phase flips by 180 degrees; in the ultraviolet, as would be expected if
high l pulsations were excited. We find one periodicity in the light curve of
G185-32, at 141 s, which does not fit theoretical models for the change of
amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200
Near-Infrared Constraints on the Presence of Warm Dust at Metal-Rich, Helium Atmosphere White Dwarfs
Here, we present near-infrared spectroscopic observations of 15 helium
atmosphere, metal-rich white dwarfs obtained at the NASA Infrared Telescope
Facility. While a connection has been demonstrated between the most highly
polluted, hydrogen atmosphere white dwarfs and the presence of warm
circumstellar dust and gas, their frequency at the helium atmosphere variety is
poorly constrained. None of our targets show excess near-infrared radiation
consistent with warm orbiting material. Adding these near-infrared constraints
to previous near- and mid-infrared observations, the frequency of warm
circumstellar material at metal-bearing white dwarfs is at least 20% for
hydrogen-dominated photospheres, but could be less than 5% for those
effectively composed of helium alone. The lower occurrence of dust disks around
helium atmosphere white dwarfs is consistent with Myr timescales for
photospheric metals in massive convection zones. Analyzing the mass
distribution of 10 white dwarfs with warm circumstellar material, we search for
similar trends between the frequency of disks and the predicted frequency of
massive planets around intermediate mass stars, but find the probability that
disk-bearing white dwarfs are more massive than average is not significant.Comment: AJ, in pres
Constraints on the Lifetimes of Disks Resulting from Tidally Destroyed Rocky Planetary Bodies
Spitzer IRAC observations of 15 metal-polluted white dwarfs reveal infrared
excesses in the spectral energy distributions of HE 0110-5630, GD 61, and HE
1349-2305. All three of these stars have helium-dominated atmospheres, and
their infrared emissions are consistent with warm dust produced by the tidal
destruction of (minor) planetary bodies. This study brings the number of
metal-polluted, helium and hydrogen atmosphere white dwarfs surveyed with IRAC
to 53 and 38 respectively. It also nearly doubles the number of metal-polluted
helium-rich white dwarfs found to have closely orbiting dust by Spitzer. From
the increased statistics for both atmospheric types with circumstellar dust, we
derive a typical disk lifetime of log[t_{disk} (yr)] = 5.6+-1.1 (ranging from
3*10^4 - 5*10^6 yr). This assumes a relatively constant rate of accretion over
the timescale where dust persists, which is uncertain. We find that the
fraction of highly metal-polluted helium-rich white dwarfs that have an
infrared excess detected by Spitzer is only 23 per cent, compared to 48 per
cent for metal-polluted hydrogen-rich white dwarfs, and we conclude from this
difference that the typical lifetime of dusty disks is somewhat shorter than
the diffusion time scales of helium-rich white dwarf. We also find evidence for
higher time-averaged accretion rates onto helium-rich stars compared to the
instantaneous accretion rates onto hydrogen-rich stars; this is an indication
that our picture of evolved star-planetary system interactions is incomplete.
We discuss some speculative scenarios that can explain the observations.Comment: 20 pages, 9 figures, accepted to be published in Ap
On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars
We present a detailed analysis of a large spectroscopic and photometric
sample of DZ white dwarfs based on our latest model atmosphere calculations. We
revise the atmospheric parameters of the trigonometric parallax sample of
Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs
discovered in the Sloan Digital Sky Survey. The inclusion of metals and
hydrogen in our model atmosphere calculations leads to different atmospheric
parameters than those derived from pure helium models. Calcium abundances are
found in the range from log (Ca/He) = -12 to -8. We also find that fits of the
coolest objects show peculiarities, suggesting that our physical models may not
correctly describe the conditions of high atmospheric pressure encountered in
the coolest DZ stars. We find that the mean mass of the 11 DZ stars with
trigonometric parallaxes, = 0.63 Mo, is significantly lower than that
obtained from pure helium models, = 0.78 Mo, and in much better agreement
with the mean mass of other types of white dwarfs. We determine hydrogen
abundances for 27% of the DZ stars in our sample, while only upper limits are
obtained for objects with low signal-to-noise ratio spectroscopic data. We
confirm with a high level of confidence that the accretion rate of hydrogen is
at least two orders of magnitude smaller than that of metals (and up to five in
some cases) to be compatible with the observations. We find a correlation
between the hydrogen abundance and the effective temperature, suggesting for
the first time empirical evidence of a lower temperature boundary for the
hydrogen screening mechanism. Finally, we speculate on the possibility that the
DZA white dwarfs could be the result of the convective mixing of thin
hydrogen-rich atmospheres with the underlying helium convection zone.Comment: 67 pages, 32 figures, accepted for publication in Ap
High Resolution Spectroscopy of the Pulsating White Dwarf G29-38
We present the analysis of time-resolved, high resolution spectra of the cool
white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha
core, we detect velocity changes as large as 16.5 km/s and conclude that they
are due to the horizontal motions associated with the g-mode pulsations on the
star. We detect seven pulsation modes from the velocity time-series and
identify the same modes in the flux variations. We discuss the properties of
these modes and use the advantage of having both velocity and flux measurements
of the pulsations to test the convective driving theory proposed for DAV stars.
Our data show limited agreement with the expected relationships between the
amplitude and phases of the velocity and flux modes. Unexpectedly, the velocity
curve shows evidence for harmonic distortion, in the form of a peak in the
Fourier transform whose frequency is the exact sum of the two largest
frequencies. Combination frequencies are a characteristic feature of the
Fourier transforms of light curves of G29-38, but before now have not been
detected in the velocities, nor does published theory predict that they should
exist. We compare our velocity combination frequency to combination frequencies
found in the analysis of light curves of G29-38, and discuss what might account
for the existence of velocity combinations with the properties we observe.
We also use our high-resolution spectra to determine if either rotation or
pulsation can explain the truncated shape observed for the DAV star's line
core. We are able to eliminate both mechanisms: the average spectrum does not
fit the rotationally broadened model and the time-series of spectra provides
proof that the pulsations do not significantly truncate the line.Comment: 24 pages, 9 figures, Accepted for publication in ApJ (June
Two new pulsating low-mass pre-white dwarfs or SX Phenix stars?*
Context. The discovery of pulsations in low-mass stars opens an opportunity
for probing their interiors and to determine their evolution, by employing the
tools of asteroseismology. Aims. We aim to analyze high-speed photometry of
SDSSJ145847.02070754.46 and SDSSJ173001.94070600.25 and discover
brightness variabilities. In order to locate these stars in the diagram we fit optical spectra (SDSS) with synthetic non-magnetic
spectra derived from model atmospheres. Methods. To carry out this study, we
used the photometric data obtained by us for these stars with the 2.15m
telescope at CASLEO, Argentina. We analyzed their light curves and we apply the
Discrete Fourier Transform to determine the pulsation frequencies. Finally, we
compare both stars in the diagram, with known two
pre-white dwarfs, seven pulsating pre-ELM white dwarf stars, Scuti and
SX Phe stars. Results. We report the discovery of pulsations in
SDSSJ145847.02070754.46 and SDSSJ173001.94070600.25. We determine their
effective temperature and surface gravity to be = 7 972 200
K, = 4.25 0.5 and = 7 925 200 K, =
4.25 0.5, respectively. With these parameters these new pulsating
low-mass stars can be identified with either ELM white dwarfs (with ~ 0.17 Mo)
or more massive SX Phe stars. We identified pulsation periods of 3 278.7 and 1
633.9 s for SDSSJ145847.02070754.46 and a pulsation period of 3 367.1 s for
SDSSJ173001.94070600.25. These two new objects together with those of Maxted
et al. (2013, 2014) indicate the possible existence of a new instability domain
towards the late stages of evolution of low-mass white dwarf stars, although
their identification with SX Phe stars cannot be discarded.Comment: 5 pages, 5 figures, 1 table, accepted for publication in A&A
- …