1,609 research outputs found

    SDSS White Dwarf mass distribution at low effective temperatures

    Get PDF
    The DA white dwarfs in the Sloan Digital Sky Survey, as analyzed in the papers for Data Releases 1 and 4, show an increase in surface gravity towards lower effective temperatures below 11500 K. We study the various possible explanations of this effect, from a real increase of the masses to uncertainties or deficiencies of the atmospheric models. No definite answer is found but the tentative conclusion is that it is most likely the current description of convection in the framework of the mixing-length approximation, which leads to this effect.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS

    Full text link
    For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and < 45 kK, i.e. exceeding those of DB white dwarfs and having lower ones than DO white dwarfs. Therefore, this temperature range was long known as the DB-gap. Only recently, the SDSS provided spectra of several candidate DB-gap stars. First analyses based on model spectra calculated under the assumption of local thermodynamic equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs.Comment: 4 pages, 2 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Near-Infrared Constraints on the Presence of Warm Dust at Metal-Rich, Helium Atmosphere White Dwarfs

    Get PDF
    Here, we present near-infrared spectroscopic observations of 15 helium atmosphere, metal-rich white dwarfs obtained at the NASA Infrared Telescope Facility. While a connection has been demonstrated between the most highly polluted, hydrogen atmosphere white dwarfs and the presence of warm circumstellar dust and gas, their frequency at the helium atmosphere variety is poorly constrained. None of our targets show excess near-infrared radiation consistent with warm orbiting material. Adding these near-infrared constraints to previous near- and mid-infrared observations, the frequency of warm circumstellar material at metal-bearing white dwarfs is at least 20% for hydrogen-dominated photospheres, but could be less than 5% for those effectively composed of helium alone. The lower occurrence of dust disks around helium atmosphere white dwarfs is consistent with Myr timescales for photospheric metals in massive convection zones. Analyzing the mass distribution of 10 white dwarfs with warm circumstellar material, we search for similar trends between the frequency of disks and the predicted frequency of massive planets around intermediate mass stars, but find the probability that disk-bearing white dwarfs are more massive than average is not significant.Comment: AJ, in pres

    Constraints on the Lifetimes of Disks Resulting from Tidally Destroyed Rocky Planetary Bodies

    Get PDF
    Spitzer IRAC observations of 15 metal-polluted white dwarfs reveal infrared excesses in the spectral energy distributions of HE 0110-5630, GD 61, and HE 1349-2305. All three of these stars have helium-dominated atmospheres, and their infrared emissions are consistent with warm dust produced by the tidal destruction of (minor) planetary bodies. This study brings the number of metal-polluted, helium and hydrogen atmosphere white dwarfs surveyed with IRAC to 53 and 38 respectively. It also nearly doubles the number of metal-polluted helium-rich white dwarfs found to have closely orbiting dust by Spitzer. From the increased statistics for both atmospheric types with circumstellar dust, we derive a typical disk lifetime of log[t_{disk} (yr)] = 5.6+-1.1 (ranging from 3*10^4 - 5*10^6 yr). This assumes a relatively constant rate of accretion over the timescale where dust persists, which is uncertain. We find that the fraction of highly metal-polluted helium-rich white dwarfs that have an infrared excess detected by Spitzer is only 23 per cent, compared to 48 per cent for metal-polluted hydrogen-rich white dwarfs, and we conclude from this difference that the typical lifetime of dusty disks is somewhat shorter than the diffusion time scales of helium-rich white dwarf. We also find evidence for higher time-averaged accretion rates onto helium-rich stars compared to the instantaneous accretion rates onto hydrogen-rich stars; this is an indication that our picture of evolved star-planetary system interactions is incomplete. We discuss some speculative scenarios that can explain the observations.Comment: 20 pages, 9 figures, accepted to be published in Ap

    On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars

    Full text link
    We present a detailed analysis of a large spectroscopic and photometric sample of DZ white dwarfs based on our latest model atmosphere calculations. We revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz (12 stars) and analyze 147 new DZ white dwarfs discovered in the Sloan Digital Sky Survey. The inclusion of metals and hydrogen in our model atmosphere calculations leads to different atmospheric parameters than those derived from pure helium models. Calcium abundances are found in the range from log (Ca/He) = -12 to -8. We also find that fits of the coolest objects show peculiarities, suggesting that our physical models may not correctly describe the conditions of high atmospheric pressure encountered in the coolest DZ stars. We find that the mean mass of the 11 DZ stars with trigonometric parallaxes, = 0.63 Mo, is significantly lower than that obtained from pure helium models, = 0.78 Mo, and in much better agreement with the mean mass of other types of white dwarfs. We determine hydrogen abundances for 27% of the DZ stars in our sample, while only upper limits are obtained for objects with low signal-to-noise ratio spectroscopic data. We confirm with a high level of confidence that the accretion rate of hydrogen is at least two orders of magnitude smaller than that of metals (and up to five in some cases) to be compatible with the observations. We find a correlation between the hydrogen abundance and the effective temperature, suggesting for the first time empirical evidence of a lower temperature boundary for the hydrogen screening mechanism. Finally, we speculate on the possibility that the DZA white dwarfs could be the result of the convective mixing of thin hydrogen-rich atmospheres with the underlying helium convection zone.Comment: 67 pages, 32 figures, accepted for publication in Ap

    High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    Get PDF
    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage of having both velocity and flux measurements of the pulsations to test the convective driving theory proposed for DAV stars. Our data show limited agreement with the expected relationships between the amplitude and phases of the velocity and flux modes. Unexpectedly, the velocity curve shows evidence for harmonic distortion, in the form of a peak in the Fourier transform whose frequency is the exact sum of the two largest frequencies. Combination frequencies are a characteristic feature of the Fourier transforms of light curves of G29-38, but before now have not been detected in the velocities, nor does published theory predict that they should exist. We compare our velocity combination frequency to combination frequencies found in the analysis of light curves of G29-38, and discuss what might account for the existence of velocity combinations with the properties we observe. We also use our high-resolution spectra to determine if either rotation or pulsation can explain the truncated shape observed for the DAV star's line core. We are able to eliminate both mechanisms: the average spectrum does not fit the rotationally broadened model and the time-series of spectra provides proof that the pulsations do not significantly truncate the line.Comment: 24 pages, 9 figures, Accepted for publication in ApJ (June

    Two new pulsating low-mass pre-white dwarfs or SX Phenix stars?*

    Get PDF
    Context. The discovery of pulsations in low-mass stars opens an opportunity for probing their interiors and to determine their evolution, by employing the tools of asteroseismology. Aims. We aim to analyze high-speed photometry of SDSSJ145847.02++070754.46 and SDSSJ173001.94++070600.25 and discover brightness variabilities. In order to locate these stars in the TeffloggT_{\rm eff} - \log g diagram we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods. To carry out this study, we used the photometric data obtained by us for these stars with the 2.15m telescope at CASLEO, Argentina. We analyzed their light curves and we apply the Discrete Fourier Transform to determine the pulsation frequencies. Finally, we compare both stars in the TeffloggT_{\rm eff} - \log g diagram, with known two pre-white dwarfs, seven pulsating pre-ELM white dwarf stars, δ\delta Scuti and SX Phe stars. Results. We report the discovery of pulsations in SDSSJ145847.02++070754.46 and SDSSJ173001.94++070600.25. We determine their effective temperature and surface gravity to be TeffT_{\rm eff} = 7 972 ±\pm 200 K, logg\log g = 4.25 ±\pm 0.5 and TeffT_{\rm eff} = 7 925 ±\pm 200 K, logg\log g = 4.25 ±\pm 0.5, respectively. With these parameters these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~ 0.17 Mo) or more massive SX Phe stars. We identified pulsation periods of 3 278.7 and 1 633.9 s for SDSSJ145847.02++070754.46 and a pulsation period of 3 367.1 s for SDSSJ173001.94++070600.25. These two new objects together with those of Maxted et al. (2013, 2014) indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded.Comment: 5 pages, 5 figures, 1 table, accepted for publication in A&A
    corecore