26 research outputs found

    Self-effective scientific reasoning? Differences between elementary and secondary school students

    Get PDF
    Although scientific reasoning is not a formal, independent school subject, it is an increasingly important skill, especially for student learning in science, technology, engineering, and mathematics (STEM) subjects. To promote scientific reasoning effectively, it is important to know its influencing factors. While cognitive influences have been investigated, affective-motivational factors, particularly self-efficacy, have rarely been considered in studies on scientific reasoning. To examine, for the first time, whether self-efficacy can be measured in a task-specific way and whether self-efficacy correlates with students’ scientific reasoning performance, the study assessed performance in scientific reasoning and self-efficacy (academic and task-specific) in a sample of 140 fourth graders and 148 eighth graders. As expected, higher correlations emerged for task-specific self-efficacy in both grades. A hierarchical cluster analysis showed that the correlational patterns were not the same across grade levels, with differences in self-estimated performance prevailing between the two grade levels: The largest cluster in Grade 4 (41%) comprised children who significantly overestimated their performance, whereas the largest cluster in Grade 8 (39%) comprised students who gave a realistic estimate of their own performance in scientific reasoning. This cluster was not present in Grade 4. Additional clusters of students who overestimated or underestimated their performance emerged in both grades. The results support the conclusion that self-efficacy expectations are important to consider when fostering scientific reasoning, and the large number of elementary school students who overestimated their performance suggests that not all students might benefit from interventions targeted at increasing self-efficacy

    Does Task-specific Self-efficacy Predict Science Competencies?

    Get PDF
    Self-efficacy is an affective-motivational factor that strongly predicts academic performance. With respect to science competencies, self-efficacy is related to two subcomponents that are closely associated already in kindergarten: Science content knowledge (e.g., physics knowledge) and scientific reasoning (e.g., knowing how to conduct a controlled experiment). To make accurate action predictions, the precise and specific measurement of self-efficacy is needed. With respect to different subcomponents of science competencies (i.e., science knowledge and scientific reasoning), there is to date a lack of studies that simultaneously investigate the association between students’ self-efficacy and their performance in these two subcomponents of science competencies. The complex (cross-)relations between these constructs are investigated in the present study. The sample comprised N=181 fifth graders (90 girls, 91 boys). Exploratory and confirmatory factor analyses suggest that the two task-specific self-efficacy scales (scientific reasoning and science content knowledge) can be distinguished from each other and from general academic self-efficacy. Structural equation models reveal that task-specific self-efficacy in scientific reasoning is related to performance in scientific reasoning (.52) and science content knowledge (.32). Conversely, task-specific self-efficacy in science content knowledge correlates with performance in science content knowledge (.36) and scientific reasoning (.27). As expected, the strongest correlations between task-specific self-efficacy and performance emerge within the domain, but the significant cross-relations show the potential for furthering both aspects of performance and self-efficacy of science competencies and a need for a more detailed (longitudinal) investigation of these complex relations

    Diagrams support revision of prior belief in primary-school children

    Get PDF
    The reluctance of children to revise their prior beliefs is a prominent phenomenon in the reasoning literature. One way to facilitate belief change is offering explanations, and this study examined whether highlighting (counter)evidence with diagrams leads to belief revision to the same extent. Altogether 134 preschoolers and second-graders (5- and 7-year-olds, respectively) were presented with either counterintuitive data or explanations, both refuting a strong commonly held belief concerning the relation between two variables (e.g. eating carrots improves vision). In the explanation condition, we presented children with an explanatory underlying mechanism for the unexpected causal relation (e.g. spinach and carrots contain the same amount of vitamin A, with both improving vision). In the diagram condition, children were presented with empirical data displayed in a bar graph (non-covariation), which also disconfirmed the initial belief. In both age groups and both conditions we found significant numbers of belief revision with high certainty ratings concerning the new belief. Belief change was more pronounced in second-graders, who in addition showed significantly more changes in the diagram condition than in the explanation condition. These findings suggest that the perceptual saliency of (counter)evidence helps children to correctly evaluate hypotheses, which supports changes in their prior belief

    Entwicklung des wissenschaftlichen Denkens bei Vier- bis Achtjährigen

    Get PDF
    Die Metapher vom «Kind als Wissenschaftler» ist nach wie vor einflussreich in der Entwicklungspsychologie. Kinder bilden intuitive Theorien und Hypothesen ĂĽber Phänomene ihrer Umgebung und ĂĽber die eigene Person (physikalische, biologische, psychologische Theorien). Kinder prĂĽfen und revidieren Theorien und Hypothesen auch in ihren alltäglichen Entdeckungsprozessen. Neuere Forschung zeigt, dass schon Vorschulkinder dabei recht rational vorgehen. Zudem sind sie auch schon in der Lage, Daten aus unterschiedlichen Repräsentationsformen (z. B. Diagramme und Graphen) zu interpretieren, um Hypothesen zu prĂĽfen. Bereits im Vorschulalter entwickelt sich formales und inhaltliches wissenschaftliches Denken, auf das in der Grundschule aufgebaut werden kann. FĂĽr den Lehrer ist eine korrekte Einschätzung des kindlichen Vermögens zum wissenschaftlichen Denken wichtig, um adäquate Lerngelegenheiten zu schaffen (z. B. Experimentiermöglichkeiten), die der Lehrer mit moderat konstruktivistischen Elementen begleitet

    Der Einfluss externer Repräsentationsformen auf proportionales Denken im Grundschulalter

    No full text

    The influence of external representations on young children's acquisition of proportional reasoning

    No full text
    Die vorliegende Studie untersucht den Einfluss dreier externer Repräsentationsformen auf die Entwicklung und den Transfer von proportionalem Denken bei Grundschulkindern. Besonders die Überwindung des sogenannten additiven Misskonzeptes, demzufolge Grundschulkinder proportionale Verhältnisse durch Addition der gleichen Zahl statt durch Multiplikation herzustellen versuchen, stellt eine Herausforderung dar. Externe Repräsentationsformen können nützliche Werkzeuge für die Entwicklung eines neuen Konzeptes sein, indem sie die Wahrnehmung spezifischer Prinzipien einer Problemsituation (Einschränkungen und Möglichkeiten) unterstützen. Gleichzeitig sind manche externe Repräsentationsformen besonders geeignet, invariante Strukturen einer Problemsituation über verschiedene Kontexte zu betonen und können so Transfer erleichtern. Als externe Repräsentationsformen wurden in dieser Studie eine Balkenwaage, ein konventioneller (abstrakter) und ein kontextualisierter Graph in einem Koordinatensystem gewählt, um proportionales Denken zu trainieren. Der kontextualisierte Graph sollte durch integrierte Visualisierungen der Problemsituation die Interpretation der proportionalen Größe erleichtern. Es wurde angenommen, dass der explizite Bezug einer Repräsentationsform zur proportionalen Problemsituation förderlich für den Erwerb proportionaler Denkstrukturen sein würde, während die Abstraktheit einer Repräsentationsform den Transfer auf neue Situationen erleichtert. 67 Viertklässler wurden in Vierergruppen mit einer der drei Repräsentationsformen an zwei Nachmittagen trainiert, proportionale Probleme in einem Saftmischkontext zu lösen. Die Ergebnisse zeigen, dass die drei Formen den Entwicklungsprozess proportionalen Denkens unterschiedlich beeinflussen. Obwohl sich die Leistung aller drei Gruppen vom Vortest zum Nachtest signifikant verbesserte, profitierte die Gruppe, die mit der Balkenwaage arbeitete am meisten vom Training. Die Kontextualisierung des Graphen zeigte weder für ein elaboriertes Verständnis der proportionalen Problemstruktur noch für die Bereitschaft, die Repräsentationsform für anspruchsvolle Aufgabe zu nutzen Vorteile gegenüber den beiden anderen Repräsentationsformen. Auf der anderen Seite schien die mit dem abstrakten Graphen trainierte Gruppe ihre Repräsentationsform am häufigsten bei Aufgaben im unbekannten Transferkontext einzusetzen. Insgesamt zeigt die Arbeit, dass externe Repräsentationsformen bereits im Grundschulalter als hilfreiches Werkzeug für die Entwicklung eines elaborierten proportionalen Verständnisses eingesetzt werden können.This study investigates the effect of three different forms of external representations on the development and transfer of proportional reasoning in elementary school. Specifically the common misconception of additive comparison of ratios is prevalent in this age. Proportional reasoning is difficult to acquire for elementary school children since it requires considering two dimensions simultaneously and using multiplicative instead of additive operations. External representations can be helpful tools for acquiring a new concept by reinforcing the perception of affordances and constraints of a problem situation. Furthermore, some forms of representation are specifically apt to indicate structural invariants across different situations and thus potentially aid transfer. A balance beam and two forms of a graph (an abstract and a contextualized graph) were selected as external representations to help reasoning with proportional, i.e., two-dimensional, problems. The contextualized graph contained visualizations of the trained problem situation in order to help its interpretation. A form's explicitness of reference to the problem context was hypothesized to facilitate acquisition whereas abstractness of representation may be conducive to transfer. 67 ten-year-old children were trained with either a balance beam, an abstract graph, or a contextualized graph to reason proportionally in the context of a juice mixture problem. Results indicate that the three representations differentially influenced the development of proportional reasoning. Although the performance of each group improved significantly between pretest and posttest, the balance beam group benefited most from the training. Interestingly, the group working with the contextualized graph did not outperform the other groups. This suggests that a combination of properties of two representations did not enhance acquisition of proportional reasoning or its transfer more than working with the untransformed representations. Apparently, the added contextualization to a conventional symbol system did not support a meaningful connection between symbols and proportional properties of a situation. On the other hand, children trained with the conventional (abstract) graph tended to use it most for solving problems in an unfamiliar transfer context, suggesting that, given sufficient training, elementary school children can benefit profoundly from working with a conventional graph. In sum, this study gives promising indication that already in elementary school different kinds of representation can serve as meaningful devices. This study demonstrates that representations once meaningfully related to the problem context are not only beneficial for representing and communicating information of already acquired concepts, but can be used as scaffolding tools for acquiring new concepts

    Is it possible to validly assess learning levels in natural science among elementary school children by means of written tests?

    Full text link
    Im naturwissenschaftlichen Unterricht ist die Diagnostik von Schülerkonzepten im Sinne eines formativen Assessments eine notwendige Voraussetzung, um die konzeptuelle Entwicklung angemessen fördern zu können. Während qualitative Interviews zur Erfassung konzeptueller naturwissenschaftlicher Lernstände bei Grundschülern weit verbreitet sind, ist die Frage, inwiefern auch die ökonomischeren, geschlossenen schriftlichen Antwortformate eine valide Diagnostik individueller Konzepte ermöglichen, bisher noch wenig untersucht. Der vorliegende Beitrag zeigt an jeweils zwei Klassen der dritten Jahrgangsstufe der Grundschule (Alter: M = 9.26 Jahre, SD = 0.42) für die beiden naturwissenschaftlichen Themenbereiche "Schwimmen und Sinken" (N = 41) und "Verdunstung und Kondensation" (N = 32), dass ein substantieller Zusammenhang zwischen mündlichen Interviews und schriftlichen Testergebnissen besteht und somit - unter bestimmten Voraussetzungen - von einer validen Erfassung kindlicher Lernstände auch mit schriftlichen Aufgaben ausgegangen werden kann. (DIPF/Orig.)In science instruction, diagnosing students´ concepts in the sense of a formative assessment constitutes a necessary prerequisite for an adequate promotion of conceptual development. While qualitative interviews aiming at surveying conceptual learning levels in natural science among elementary school students are well established, hardly any studies exist that examine in how far the more economic, closed written answer formats allow for a valid diagnosis of individual concepts. Based on a survey carried out in two classes of third-grade elementary school students (Age: M = 9.26 years, SD = 0.42) with regard to the two science units "Floating and Sinking" (N = 41) and "Evaporation and Condensation" (N = 32), the present contribution shows that there is a substantial correlation between oral interviews and written test results and that, therefore, - given certain preconditions - it can be assumed that written tests, too, allow for a valid recording of children\u27s learning levels. (DIPF/Orig.

    Science competencies in kindergarten: a prospective study in the last year of kindergarten

    No full text
    Science competencies are considered an important 21st century skill. How this skill develops in childhood is, however, not well understood, and in particular little is known about how different aspects of science competencies are related. In this prospective study with 58 children aged 5–6 years, we investigate the development of two aspects of science competence: scientific thinking and science content knowledge. Scientific thinking was assessed with a comprehensive 30-item instrument; science content knowledge was measured with an 18-item instrument that assesses children’s knowledge with regard to melting and evaporation. The results revealed basic competencies in scientific thinking and science content knowledge at the end of kindergarten (46% and 49% correct, respectively, both different from chance). In mid-kindergarten, children performed better than chance on the assessment of science content knowledge (40% correct) but not on the assessment of scientific thinking (34% correct). Science content knowledge in mid-kindergarten predicted children’s science content knowledge at the end of kindergarten, as well as scientific thinking (both at 6 years). The opposite pattern did not hold: scientific thinking in mid-kindergarten did not predict science content knowledge at the end of kindergarten. Our findings show initial science competencies during kindergarten, and they suggest that children’s science content knowledge and scientific thinking are interrelated in a meaningful way. These results are discussed with respect to the different hypotheses that connect scientific thinking and science content knowledge as key features of science competencies. Implications for research and teaching are discussed

    Mentale Modelle von Zeit und Zukunft

    No full text
    corecore