22 research outputs found

    Editorial: Hypoxia in Kidney Disease

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this record.Introduction Oxygen was first described by Carl Wilhelm Scheele as “Fire air” since it supported combustion. He obtained oxygen by heating mercuric oxide, silver carbonate, and nitrate salts. Scheele communicated his findings to Lavoisier, who realized the significance of this finding. Scheele's discovery of oxygen (ca. 1771) was chronologically earlier than the corresponding work of Priestley and Lavoisier, but he did not publish this discovery until 1777, after both of his rivals had already published their findings (West, 2014). Because others generally are accredited for the discovery of oxygen, and a number of other discoveries, he was nicknamed “hard-luck Scheele.” Oxygen is essential for aerobic metabolism, a fundamental mechanism for energy production. The delivery of optimal levels of oxygen to tissues is tightly regulated as both hypoxia and hyperoxia are detrimental for cellular function. Indeed, tissue hypoxia has been found during pathological conditions such as cancer (Liu et al., 2016), diabetes (Palm et al., 2003), hypertension (Welch et al., 2001), chronic kidney disease (CKD) (Milani et al., 2016), and stroke (Ferdinand and Roffe, 2016). In the 90's Fine et al. proposed kidney hypoxia as a mediator of progressive kidney disease (Fine et al., 1998). Since then, experimental and clinical studies have solidified the view that kidney hypoxia plays a critical role during the genesis and progression of both acute and CKD. This research field is currently at the beginning of integrating pre-clinical with clinical research in which kidney hypoxia related mechanisms are quantified by non-invasive imaging. In combination with the fact that some key questions remain unanswered, this offers exciting new research perspectives that are waiting to be explored. With this Frontiers Research Topic we discuss and identify potential mediators/controllers of hypoxia in kidney disease. If we understand more about the sequence of events leading to kidney hypoxia, its regulation and consequences in renal disease, we might be able to have a major impact in clinical practice. I.e., more accurate and earlier diagnosis, novel treatment targets, and novel therapies.British Heart FoundationEuropean Union, Seventh Framework ProgrammeSwedish Research CouncilSwedish Diabetes Foundatio

    Angiotensin II-induced hypertension in rats is only transiently accompanied by lower renal oxygenation

    Get PDF
     This is the final version. Available from Springer Nature via the DOI in this record. Activation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days. Mean arterial pressure (n = 5), cortical (n = 6) and medullary (n = 7) oxygenation (pO2) were continuously recorded by telemetry and renal tissue injury was scored. Angiotensin II increased arterial pressure gradually to 150 ± 18 mmHg. This was associated with transient reduction of oxygen levels in renal cortex (by 18 ± 2%) and medulla (by 17 ± 6%) at 10 ± 2 and 6 ± 1 hours, respectively after starting infusion. Thereafter oxygen levels normalised to pre-infusion levels and were maintained during the remainder of the infusion period. In rats receiving angiotensin II, adding losartan to drinking water (300 mg/L) only induced transient increase in renal oxygenation, despite normalisation of arterial pressure. In rats, renal hypoxia is only a transient phenomenon during initiation of angiotensin II-induced hypertension.British Heart FoundationBritish Heart FoundationDutch Kidney FoundationEuropean Union, Seventh Framework Programm

    Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats

    Get PDF
    Treating spontaneously hypertensive rats (SHR) with l-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar–Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved

    Citrulline a More Suitable Substrate than Arginine to Restore NO Production and the Microcirculation during Endotoxemia

    Get PDF
    BACKGROUND: Impaired microcirculation during endotoxemia correlates with a disturbed arginine-nitric oxide (NO) metabolism and is associated with deteriorating organ function. Improving the organ perfusion in endotoxemia, as often seen in patients with severe infection or systemic inflammatory response syndrome (SIRS) is, therefore, an important therapeutic target. We hypothesized that supplementation of the arginine precursor citrulline rather than arginine would specifically increase eNOS-induced intracellular NO production and thereby improve the microcirculation during endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS: To study the effects of L-Citrulline and L-Arginine supplementation on jejunal microcirculation, intracellular arginine availability and NO production in a non-lethal prolonged endotoxemia model in mice. C57/Bl6 mice received an 18 hrs intravenous infusion of endotoxin (LPS, 0.4 µg • g bodyweight(-1) • h(-1)), combined with either L-Citrulline (6.25 mg • h-1), L-Arginine (6.25 mg • h(-1)), or L-Alanine (isonitrogenous control; 12.5 mg • h(-1)) during the last 6 hrs. The control group received an 18 hrs sterile saline infusion combined with L-Alanine or L-Citrulline during the last 6 hrs. The microcirculation was evaluated at the end of the infusion period using sidestream dark-field imaging of jejunal villi. Plasma and jejunal tissue amino-acid concentrations were measured by HPLC, NO tissue concentrations by electron-spin resonance spectroscopy and NOS protein concentrations using Western blot. CONCLUSION/SIGNIFICANCE: L-Citrulline supplementation during endotoxemia positively influenced the intestinal microvascular perfusion compared to L-Arginine-supplemented and control endotoxemic mice. L-Citrulline supplementation increased plasma and tissue concentrations of arginine and citrulline, and restored intracellular NO production in the intestine. L-Arginine supplementation did not increase the intracellular arginine availability. Jejunal tissues in the L-Citrulline-supplemented group showed, compared to the endotoxemic and L-Arginine-supplemented endotoxemic group, an increase in degree of phosphorylation of eNOS (Ser 1177) and a decrease in iNOS protein level. In conclusion, L-Citrulline supplementation during endotoxemia and not L-Arginine reduced intestinal microcirculatory dysfunction and increased intracellular NO production, likely via increased intracellular citrulline and arginine availability
    corecore