24 research outputs found

    Chemical synthesis and thermodynamic characterization of oxanine-containing oligodeoxynucleotides

    Get PDF
    Oxanine (Oxa, O), one of the major damaged bases from guanine generated by NO- or HNO(2)-induced nitrosative deamination, has been considered as a mutagen-potent lesion. For exploring more detailed properties of Oxa, large-scale preparation of Oxa-containing oligodeoxynucleotide (Oxa-ODN) with the desired base sequence is a prerequisite. In the present study, we have developed a chemical synthesis procedure of Oxa-ODNs and characterized thermodynamic properties of Oxa in DNA strands. First, 2′-deoxynucleoside of Oxa (dOxo) obtained from 2′-deoxyguanosine by HNO(2)-nitrosation was subjected to 5′-O-selective tritylation to give 5′-O-(4,4′-dimethoxytrityl)-dOxo (DMT-dOxo) with a maximum yield of 70%. Subsequently, DMT-dOxo was treated with conventional phosphoramidation, which resulted in DMT-dOxo-amidite monomer with a maximum yield of 72.5%. The amidite obtained was used for synthesizing Oxa-ODNs: the coupling yields for Oxa incorporation were over 93%. The prepared Oxa-ODNs were employed for analyzing the thermodynamic properties of DNA duplexes containing base-matches of O:N [N; C (cytosine), T (thymine), G (guanine) or A (adenine)]. Melting temperatures (T(m)) and thermodynamic stability ([Formula: see text]) were found to be lower by 6.83∼13.41°C and 2.643∼6.047 kcal mol(−1), respectively, compared with those of oligodeoxynucleotides, which had the same base sequence except that O:N was replaced by G:C (wild type). It has also been found that Oxa-pairing with cytosine shows relatively high stability in DNA duplex compared with other base combinations. The orders of [Formula: see text] were O:C > O:T > O:A > O:G. The chemical synthesis procedure and thermodynamic characteristics of Oxa-ODNs established here will be helpful for elucidating the biological significance of Oxa in relation to genotoxic and repair mechanisms

    Anti-prion activity of an RNA aptamer and its structural basis.

    Get PDF
    Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrP(C)) of PrP into an abnormal form (PrP(Sc)) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrP(C) is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrP(Sc) level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrP(C), resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases

    Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine

    Get PDF
    Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5′-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42°C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface

    Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+-dependent Pichia stipitis xylitol dehydrogenase

    Get PDF
    Development of efficient xylose-fermenting Saccharomyces cerevisiae strain has involved a large number of trials that focus on improving ethanol production from glucose and xylose present in lignocellulosic hydrolysates. In this study, a recombinant S. cerevisiae strain (SK-NY) overexpressing GRE3-encoded NADPH-dependent aldose reductase and xylulokinase with a mutated strictly NADP[+]-dependent Pichia stipitis xylitol dehydrogenase was constructed and its fermentation efficiency was compared with that of an isogenic constructed reference strain expressing P. stipitis xylose reductase instead of the GRE3 gene. Strain SK-NY efficiently fermented xylose and glucose mixture and the ethanol production by SK-NY was 21.4% higher than that of the reference strain. Interestingly, the yield of ethanol production by SK-NY strain increased from 0.395 g ethanol/g sugar to 0.435 g ethanol/g sugar after glucose depletion. Furthermore, xylitol accumulation by SK-NY strain (0.6% of total sugar) was considerably lower than that of the reference strain (4.8% of total sugar). These improvements may be influenced by the effective regeneration of NADPH/NADP[+] cofactors by GRE3 gene and the mutated strictly NADP[+]-dependent P. stipitis xylitol dehydrogenase

    Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

    Get PDF
    The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the dependency of XDH from NAD(+) to NADP(+). We also constructed a set of novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis. In the present study, we constructed a set of recombinant S. cerevisiae carrying a novel set of mutated strictly NADPH-dependent XR and NADP(+)-dependent XDH genes with overexpression of endogenous xylulokinase (XK) to study the effects of complete NADPH/NADP(+) recycling on ethanol fermentation and xylitol accumulation. All mutated strains demonstrated reduced xylitol accumulation, ranging 34.4-54.7% compared with the control strain. Moreover, compared with the control strain, the two strains showed 20% and 10% improvement in ethanol production

    A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.

    Get PDF
    Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the key enzymes for xylose fermentation and have been widely used for construction of a recombinant xylose fermenting yeast. The effective recycling of cofactors between XR and XDH has been thought to be important to achieve effective xylose fermentation. Efforts to alter the coenzyme specificity of XR and HDX by site-directed mutagenesis have been widely made for improvement of efficiency of xylose fermentation. We previously succeeded by protein engineering to improve ethanol production by reversing XDH dependency from NAD(+) to NADP(+). In this study, we applied protein engineering to construct a novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis, in order to recycle NADPH between XR and XDH effectively. One double mutant, E223A/S271A showing strict NADPH dependency with 106% activity of wild-type was generated. A second double mutant, E223D/S271A, showed a 1.27-fold increased activity compared to the wild-type XR with NADPH and almost negligible activity with NADH

    A novel production method for high-fructose glucose syrup from sucrose-containing biomass by a newly isolated strain of osmotolerant meyerozyma guilliermondii

    Get PDF
    The article has been accepted for publication in Journal of Microbiology and Biotechnology published by the Korean Society for Microbiology and Biotechnology.One osmotolerant strain from among 44 yeast isolates was selected based on its growth abilities in media containing high concentrations of sucrose. This selected strain, named SKENNY, was identified as Meyerozyma guilliermondii by sequencing the internal transcribed spacer regions and partial D1/D2 large-subunit domains of the 26S ribosomal RNA. SK-ENNY was utilized to produce high-fructose glucose syrup (HFGS) from sucrose-containing biomass. Conversion rates to HFGS from 310-610 g/l of pure sucrose and from 75-310 g/l of sugar beet molasses were 73.5-94.1% and 76.2-91.1%, respectively. In the syrups produced, fructose yields were 89.4-100% and 96.5-100% and glucose yields were 57.6-82.5% and 55.3-79.5% of the theoretical values for pure sucrose and molasses sugars, respectively. This is the first report of employing M. guilliermondii for production of HFGS from sucrose-containing biomass
    corecore