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Abstract

Xylose reductase (XR) and xylitol dehydrogenase KXare the key enzymes for
xylose fermentation and have been widely used dostruction of a recombinant xylose
fermenting yeast. The effective recycling of cofastbetween XR and XDH has been
thought to be important to achieve effective xyldsementation. Efforts to alter the
coenzyme specificity of XR and HDX by site-directeditagenesis have been widely
made for improvement of efficiency of xylose ferrtagion. We previously succeeded by
protein engineering to improve ethanol productignréversing XDH dependency from
NAD" to NADF'. In this study, we applied protein engineeringctmstruct a novel
strictly NADPH dependent XR frorRichia stipitis by site-directed mutagenesis, in order
to recycle NADPH between XR and XDH effectively. @daouble mutant, E223A/S271A
showing strict NADPH dependency with 106 % actiwtywild-type was generated. A
second double mutant, E223D/S271A, showed a 1.@7iioreased activity compared to

the wild-type XR with NADPH and almost negligibletaity with NADH.
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1. Introduction

Xylose is the second most abundant pentose sugatitwing the lignocellulosic
renewable biomass after glucose, and its compégteeitation is economically valuable
for producing biofuel from lignocellulosic biomaf8]. RecombinantS. cerevisiae can
ferment xylose through a fungal pathway involvingotheterologous oxidoreductase
genes. In this pathwayichia stipitis xylose reductase (PsXR) (XR; EC 1.1.1.21) [18],
which prefers NADPH, reduces xylose to xylitol @olled by P. stipitis xylitol
dehydrogenase (PsXDH), which exclusively requiresDN (XDH; EC 1.1.1.9) [17],
oxidizes xylitol into xylulose S cerevisiae xylulokinase (XK) (EC 2.7.1.17) naturally
phosphorylates xylulose to xylulose-5-phosphatejcivhis then metabolized by the
glycolytic pathway via the pentose phosphate paghiwh XK overexpression improves
the efficiency of xylose fermentation [4, 5, 15]litiough this fungal pathway is highly
expressed i®. cerevisiae, the efficiency of ethanol production is somewblagtructed by
the unfavorable accumulation of xylitol due to th@alance of coenzyme specificities
between XR and XDH [6].

Xylose reductase is a member of the aldo-keto tadec(AKR) superfamily
which is made up of 14 different families and apjmately 120 members with a
majority of dual cofactor type enzymes [8andida tenuis XR (CtXR) is one of these
enzymes. Its crystal structure has been deternahddferent levels of resolution and its

binding sites with NAD(P)H were also determined , 1) 25]. Although only little
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structural information of PsXR is available, it hatsout 76% homology with the CtXR.
This high percentage of similarity should provideng clues for manipulation of PsXR
[13].

Protein engineering has been widely used to dleicbenzyme specificity of XR

and XDH. Since PsXDH accepts only NADnany researchers reversed the preference

of XR to NADH in order to achieve NAIINADH cofactor recycling [1, 13, 16, 20]. On
the other hand, we have been working on convedafgctor usage of XDH to NADP
from NAD" [21]. We previously succeeded to improve the feraéon process and
ethanol production by using these XDH mutants [28].this study, site-directed
mutagenesis of PsXR was performed to constructrietlgt NADPH-dependent XR,
expecting decreasing or preventing xylitol accurtiote and subsequently improving

ethanol production.

2. Materialsand Methods
2.1 Cloning of theéP. dtipitis Xylose reductase gene and Site-directed mutagenesis

A plasmid, named pHis (WT) harboring the His-taggett-type (WT) PsXR
gene was constructed as described previously JRDKR mutations were introduced by
site-directed mutagenesis, using the single rou@@R Pnethod withPfuTurbo DNA
polymerase (Stratagene) and the PCR Thermal CRIERSONAL (TaKaRa, Otsu,
Japan). The codons used for mutations introducetisnstudy were as follows: E223A
(GAA—GCA), E223D (GAA-GAC), and S271A (TC&GCC). The PCR products
were subjected to Dpnl restriction enzyme treatmerdrder to digest the parent DNA
strands to prevent transformation of the templatasrpid. Only nicked circular

mutagenic strands were transformed iBsoherichia coli DH5a. Electroporation method
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was used to transform plasmids and the mutations wenfirmed by DNA sequencing
using Applied Biosystems 3031 genetic analyzer ABt Prism® Big Dye® Terminator

v3.1 Cycle Sequencing kit.

2.2 Overexpression and purification of (Hitgged enzymes

P. dtipitis xylose reductase wild-type and mutated genes wgueessed ifkt. coli
DH5a and purified as described previously [20]. Pudfienzymes were confirmed on
10 % acrylamide SDS-PAGE. Protein concentrationsewdetermined using the Bio
RAD Quick Start Bradford 1x Dye Reagent (Bio-Radbagatories, CA, USA) by

measuring the absorbance at 595 nm wgfiobin as a standard.

2.3 Enzyme assays and Kinetic parameters
Enzyme activities were measured spectrophotoméyriaa described previously
[20] with modification in xylose concentration t@@ mM. The kinetic parameters were

calculated by Line Weaver—Burk plots.

3. Result and Discussion
3.1 Speculation and prediction of NAD(P)H bindintgs

Crystallographic analyses of many AKRs have revkdiat they share a common
(a/B)s barrel fold, with a highly conserved coenzyme bigdpocket at the C-terminus.
90.9 % of the residues are located in the core @nea9.1 % are in the allowed regions
[11]. The nicotinamide ring of NAD(P)H is resides the core of the barrel. Residues
Glu?*" and AsA’®in CtXR, which equal to Gf&® and Asri’?in PsXR, primarily mediate

the interactions with the adenosine ribose 2'- 3ifd/droxy groups. As shown in Fig. 1,
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Glu®®® represents the essential part NADH binding whergacts by bidentate hydrogen
bond with both of the hydroxy groups. Similar mgetions have been seen in many other
NADH-binding protein structures [2, 3]. However, & Btructurally equivalent residues
Asp”*® and Vaf®® in aldose reductase in human (AR) are unablelfdl fine equivalent
roles, Asp*®is required for high affinity binding of NADPH Hgrming two salt linkages
with Lys*! and Lys*®? and fastening the loop over the co-substrate [24].

Glu?*" and Ly$"*in CtXR makes water-mediated interactions eackraind with
the 3'-hydroxy group in the case of NADBound structures. In the absence of a
negatively charged phosphate, &luside chain is able to rotate into a favourable
conformation to accept a 2.64 A hydrogen bond aintéth the 2'-hydroxy group and a
2.65 A hydrogen bond with the 3'-hydroxy group winsD™ is bound. Theoot mean
square deviations of theaCvalues between NAD and NADP-bound models was
calculated in CtXR. The largest conformational gens seen in residues 274-280,
which corresponding to 270-276 in PsXR, and thesidtees 225-229, which
corresponding to 221-225 in PsXR, a short heliegian that appears at the endsat
The largest main-chain shift is seen in“Semwhich corresponding to Sétin PsXR,
moves 2.0 A in response to the miss contact ofpti@sphate group of NADPH [10].
Furthermore, GItf* of PsXR was subjected to a mutation trial andréselt revealed that
alteration of this site might further inhibit NADbinding [13]. In addition, from the 3D
structure model of PsXR, it was reported that“&land Ph&® can form 3 and 2
hydrogen bonds with NAD respectively [19].

Considering the property as described above, thatraos were designed based
on sequence alignment of some strictly NADPH depah@nalogous enzymes in the

AKR family, such as AR, as shown in tablel, whdtgagnic acid 223 was substituted by
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aspartic acid. Both glutamic and aspartic acidaamdic side chain and fully ionized at
neutral pH and able to engage in hydrogen bondghwhk a necessary component for a
high affinity xylose binding site [9]. Alanine & nonpolar side chain that does not bind
or give off protons, or participate in hydrogeni@mic bonds. Alanine can be worked as
oily or lipid-like that promotes hydrophobic inteteons. Accordingly, we apply aspartic

acid and alanine to mutation trials instead of PgiRamic acid 223.

3.2 Strictly NADPH dependency on Gfdmutants

We applied GI&3 residue for mutation trails in order to delete NABependency.
Although this residue is also shared in NADPH higgisome reports reveal that it
contributes more to the affinity of NADH, wherepglays a role in the binding site by
binding two hydrogen bonds with 2' and 3' hydroxgups of the adenosine ribose. In
addition to changes in hydrogen-bonding of the ede, the ribose unmistakably
adopts the 3ndo conformation rather than the &ido conformation seen in the NADP
bound form [10]. The enzyme activities with NADH meecalculated after introduction of
Glu?® residue mutations (Fig. 2)o activity was detected for E223A with NADH while
E223D showed only 17 % of the activity of WT. Indétbn, catalytic efficiency was
decreased to 3.7 % of WT. Their activities with NAIB showed 52 % and 44 % of WT,
respectively. The catalytic efficiencies of E223AdeE223D were 26 % and 15 % of WT
respectively. Although, these ratios were low coragawith WT, E223D showed 2.54
and 3.9 fold improvement in NADPH/NADH ratio akg; /Kyrespectively. E223A is a
completely NADPHdependent mutant, probably due to the change efd8-ribose
conformation and miss contact of bidentate hydrolgends which was conserved in

NAD™ binding sites in most members of dual cofactoAiR family.
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3.3 Improvement of enzyme activities with doubletamis

We previously reported that the mutation of ysand Arg’® in PsXR improve
NADH preference [20], while S271A increased thefgnence for NADPH [22]. The
second rounds of mutations were done based ord#tés Accordingly, combination of
S271A with GIG* mutants was expected to increase the activityRfnith NADPH. As
shown in Fig. 1, S271A mutant showed improved NADPBHference, where the
activities with NADPH and NADH were 125% and 85%qzared to WT respectively.
These data encouraged us to perform further irgagstins by combining S271A and
Glu*?® mutants. A combination of site-directed mutatimfsthe residues Gf@® and
S271A produced unique and unprecedented results.ddbhble mutants E223A/S271A
(AA) and E223D/S271A (DA) showed improvement in taetivities with NADPH
compared to single Gitf mutants. As shown in Fig. 2, the activity of theulle mutant
AA with NADPH was 106% compared to WT. As shownTiable 2, thek.,; of WT and
AA were 622 and 657 min, respectively; theiK,, for xylose were 97.1 and 226 mM,
respectively; and their catalytic efficiencies w886 and 32.4 pM/min™, respectively.
On the other hand, the activity of DA showed 15 % With NADH (Fig. 1) in addition
to Ky was increased 12.8-fold akgy; decreased 3-fold (Table 2). As shown in Fig. 2, th
activity of DA with NADPH was increased 1.27-foldrapared to WTk, also increased
1.18-fold compared to WT, while catalytic efficignewas decreased to 93 % of WT and
Km increased 1.26-fold compared to WT (see tabldR)s we succeeded to construct a
novel strictly NADPH-dependent PsXR by combining thutation at GRf* and Ser'*

residues.
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We previously succeeded in improving xylose ferragah and ethanol production
by combining PsXR WT with the mutated PsXDH whiatcepts only NADP (i.e.,
quadruple ARSdR mutant) [23], and overexpressiorXKf [14, 15]. It may provide
further clues for understanding of importance cfremyme specificities of XR and XDH
using the strictly NADPH-dependent PsXR of thisdstuogether with the strictly
NADP'-dependent PsXDH [21]. It could possibly give mosdficient xylose

fermentation by an effective recycling of coenzyraeBIADPH between XR and XDH.
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Tablel
The mutation designs of the PsXR enzyme

Amino AlcBequence

2 2 22 2

Enzyme Accession No.  Organism Coenzyme 22 2 77 7
or mutant preference 2 4 01 2

PsXR CAA42072 Pichia stipitis NADPH V EL K S N
AKR1 B7® P21300 Mus musculus NADPH PDR * * V
2,5 DKGRA AAA83534 Corynebacteriumsp. NADPH Y D * * * V
AR P15121 Homo sapiens NADPHK P D R * * V
XR 094735  Pichiaguilliermondi NADPH ook ox * * N
XR Q6Y0zZ3 Candida parapsilosis NADH L*M * * S
XR 074237  Candida tenuis NADPH * o Mo* xL
XR P87039 Candidatropicalis NADPH L * * * * N
PsXR E223A P. dtipitis This work A * *okox
PsXR E223D This work B * *okx
Ps XR S271A This work A N
Ps XR AR Thiswork  *A * * A *
Ps XR DA Thiswork *D * * A *

Bold letters represent target mutation sites *The same amino acids as PsSXR WT
* Double mutant E223A/S271A (AA) and E223D/S271A (DA

* Strict NADPH dependent enzyme  § Aldo-keto rédse family 1, memberB7

* 2,5-Diketob-gluconic acid reductase



Table2

Kinetic parameters of wild-type and xylose reduetamitants for NADPH- and NADH-dependent reactions

Kineticrpaneters

NABP ANH
Enzymes Kmxylose?  Ky@ Keat Keat /Km Kmxylose® Ky Keat Keat /Km
[MM] [uM] [Min ] [UM Ymin™} [mM] [uM] [mi}] [UMYmin™}
XRWT  97.1+4.8 162+1.4 6222 38.6 +2.9 170 +23 30.6 +1.0 449 + 22 14.7.41
S271A 70.6 8.7 30.1+3.7 8780 29.0 +0.3 180 +12 53.3+4.4 480 + 42 9.0M40
E223A 29.8+4.7 35.2+3.7 3429 9.94 +0.44 ND ND ND ND
E223D 114 +13 55.4+7.1 34R 5.65 + 0.32 376 +32 305+11 169 +52 0.56.15
AA°® 226 + 22 17.5+0.7 5673 32427 ND ND ND ND
DA° 108 + 8 204+0.4 7334 36.0+0.3 353+1 391+46 156 + 29 04@.10

& Six different concentrations of xylose betweera@d 200 mM were used and NAD(P)H concentration 1&su M.
P Six different concentrations of NAD(P)H betweenas@ 300 uM were used and xylose concentrationA@8snM.

¢ Double mutants E223A/S271A (AA) and E223D/S271A]D

9 ND: Not detected
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Fig. 1. Schematic diagrams showing the predicted intenastad wild-type PsXR; Left-
hand panel: adenosine 2'- and 3'- hydroxy groupisarcomplex with NAD and Right-
hand panel: adenosine 2'- and 3'- hydroxy groupisdrcomplex with NADPbased on
the coenzyme binding sites in CtXR [10].
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Fig. 2. Enzyme activities of PsXR wild-type and mutatedyanes. Black and grey bars
indicated activities with NADPH and NADH respeclivevalues are average = SD, n=3.



