190 research outputs found

    Large collective Lamb shift of two distant superconducting artificial atoms

    Get PDF
    Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it can be obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure

    Engineering the Level Structure of a Giant Artificial Atom in Waveguide Quantum Electrodynamics

    Full text link
    Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typically natural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of "giant" atoms which cannot be approximated as simple dipoles. Here, we explore a new implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.Comment: 12 pages, 8 figure

    Conformation-dependent GAD65 autoantibodies in diabetes

    Full text link
    Aims/hypothesis. Conformation-dependent autoantibodies directed against GAD65 are markers of Type 1 diabetes. In this study we aimed to determine whether the substitution of GAD65 with GAD67 amino acids would affect the binding of conformation-dependent GAD65 autoantibodies. Methods. We used PCR-based site-directed mutagenesis to generate a series of mutated GAD65 cDNA constructs in which specific GAD65 coding sequences for regions of the protein critical for autoantibody binding were replaced with GAD67 coding sequences. Results. The introduction of a point mutation at position 517, substituting glutamic acid with proline, markedly reduced the binding of disease-associated GAD65 antibodies. The binding of GAD65 antibodies to the E517P mutant was reduced in the sera of all newly diagnosed Type 1 diabetes patients (n=85) by a mean of 72% (p<0.0001) compared with binding to wild-type GAD65. Patients with latent autoimmune diabetes in adults (n=24) showed a similar reduction in binding (79% reduction, p<0.0001). First-degree relatives who subsequently progressed to Type 1 diabetes (n=12) showed a reduction in binding of 80% compared with a reduction of only 65% among relatives who had not progressed to disease (n=38; p=0.025). In healthy GAD65Ab-positive individuals who did not progress to diabetes during a 9-year follow-up period (n=51), binding to GAD65-E517P was reduced by only 28% compared with binding to wild-type GAD65. Conclusions/interpretation. Differences in autoantibody binding to wild-type GAD65 versus GAD65-E517P may provide predictive information about Type 1 diabetes risk beyond that provided by the presence or absence of GAD65 autoantibodies. Lack of binding to mutant GAD65-E517P defines GAD65-positive individuals who are at higher risk of developing diabetes

    Genome-Wide Association Study Identifies Risk Loci for Cluster Headache

    Get PDF
    OBJECTIVE: To identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model, for each cohort. The two cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified two replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 x 10-17 , OR [95%CI] = 1.51 [1.37-1.66]) and rs4519530 (p = 6.98 x 10-17 , OR = 1.47 [1.34-1.61]) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 x 10-8 , OR = 1.36 [1.22-1.52]) and rs11153082 (p = 1.85 x 10-8 , OR = 1.30 [1.19-1.42]) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide-significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to e.g. treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache

    The population genomic legacy of the second plague pandemic

    Get PDF
    SummaryHuman populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.Results and discussion STAR★Method

    JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants

    Get PDF
    JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR\u200a=\u200a0.42, p\u200a=\u200a7 710(-15)) and controls (OR\u200a=\u200a0.53, p\u200a=\u200a2 710(-5)). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR\u200a=\u200a1.63, p\u200a=\u200a0.006), and controls (OR\u200a=\u200a2.69, p\u200a=\u200a1 710(-5)). The German dataset confirmed these findings (OR\u200a=\u200a0.54, p\u200a=\u200a1 710(-4) and OR\u200a=\u200a1.58, p\u200a=\u200a0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the ground for risk stratification for PML and development of therapy and prevention

    Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study

    Get PDF
    Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche

    Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations

    Get PDF
    A meta-analysis of publicly available summary statistics on multiple sclerosis combined with three Nordic multiple sclerosis cohorts (21,079 cases, 371,198 controls) revealed seven sequence variants associating with multiple sclerosis, not reported previously. Using polygenic risk scores based on public summary statistics of variants outside the major histocompatibility complex region we quantified genetic overlap between common autoimmune diseases in Icelanders and identified disease clusters characterized by autoantibody presence/absence. As multiple sclerosis-polygenic risk scores captures the risk of primary biliary cirrhosis and vice versa (P = 1.6 x 10(-7), 4.3 x 10(-9)) we used primary biliary cirrhosis as a proxy-phenotype for multiple sclerosis, the idea being that variants conferring risk of primary biliary cirrhosis have a prior probability of conferring risk of multiple sclerosis. We tested 255 variants forming the primary biliary cirrhosis-polygenic risk score and found seven multiple sclerosis-associating variants not correlated with any previously established multiple sclerosis variants. Most of the variants discovered are close to or within immune-related genes. One is a low-frequency missense variant in TYK2, another is a missense variant in MTHFR that reduces the function of the encoded enzyme affecting methionine metabolism, reported to be dysregulated in multiple sclerosis brain.publishedVersio
    corecore