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Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease affecting the central nervous system (CNS). Small non-
coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs)
have frequently been associated with MS. Here, we performed a
comprehensive analysis of all classes of sncRNAs in matching sam-
ples of peripheral blood mononuclear cells (PBMCs), plasma, cere-
brospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting
(RRMS, n = 12 in relapse and n = 11 in remission) patients, second-
ary progressive (SPMS, n = 6) MS patients, and noninflammatory
and inflammatory neurological disease controls (NINDC, n = 11;
INDC, n = 5). We show widespread changes in miRNAs and
sncRNA-derived fragments of small nuclear, nucleolar, and transfer
RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially
expressed sncRNAs were increased in RRMS relapse compared to
remission and RRMS compared to NINDC, respectively. In contrast,
65 out of 67 differentially expressed PBMC sncRNAs were decreased
in RRMS compared to NINDC. The striking contrast between the
periphery and CNS suggests that sncRNA-mediated mechanisms, in-
cluding alternative splicing, RNA degradation, and mRNA transla-
tion, regulate the transcriptome of pathogenic cells primarily in
the CNS target organ.
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Multiple sclerosis (MS) is a leading cause of neurological
disability in young adults, affecting more than 2.3 million

people worldwide (1). The pathology of MS is characterized by
the periodic disruption of the blood–brain barrier and infiltration
of immune cells, including T cells, B cells, and macrophages, into
the central nervous system (CNS), resulting in demyelination,
neuro-axonal degeneration, and neurological deficits. Both genes
and environment contribute to disease risk; however, the exact
molecular mechanisms that trigger MS are still unclear (2, 3).
Most MS patients (∼85%) present with a relapsing-remitting

(RRMS) disease course characterized by acute exacerbations,
followed by periods of full or partial recovery (1). With time,
more than half will convert to a stage of progressive worsening
(i.e., secondary progressive MS [SPMS]). MS is diagnosed mainly
based on its clinical manifestations, which are heterogeneous and
not unique for MS (1). Both radiological and laboratory tests are
therefore important to provide diagnostic specificity while easily
measured molecular biomarkers are still largely lacking.
Small noncoding RNAs (sncRNAs) are important regulators

of gene expression at the transcriptional and posttranscriptional
level and consist of several classes that exert distinct and over-
lapping functions (4). The most investigated sncRNAs are
microRNAs (miRNAs), which can regulate gene expression by

binding to target messenger RNAs (mRNAs), leading to trans-
lational repression or mRNA degradation (5). Dysregulation of
miRNAs has been described in a range of autoimmune diseases,
suggesting involvement in underlying cellular immune mecha-
nisms. Moreover, miRNAs packaged in extracellular vesicles can
target gene expression in a recipient cell and thereby modulate
immune reactions distally (6). Additionally, because of their sta-
bility in biofluids, miRNAs have been proposed as attractive
biomarkers. Indeed, more than 60 studies have profiled miRNAs
among different MS forms and treatments in a variety of biofluids
and cellular compartments (7). The most consistently up-regulated
miRNAs in MS include miR-142–3p (n = 7), miR-146a/b (n = 11),
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and miR-155 (n = 12), while family members of miR-15 (n = 8),
miR-548 (n = 7), and let-7 (n = 8) exhibit down-regulation (the
number of reporting studies is given in parenthesis) (7–11). These
miRNAs have been implicated in immune processes including
differentiation and function of CD4+ T helper cells (12–14).
Other miRNAs such as miR-150 and miR-181c, which are up-
regulated in MS, have been proposed as biomarkers of different
stages of disease, including early active MS (15, 16). However,
studies profiling miRNAs using genome-wide approaches and that
investigate other classes of sncRNAs are scarce (7).
Down-regulation of several small nucleolar RNAs (snoRNAs)

has been reported in peripheral blood mononuclear cells
(PBMCs), T cells, and plasma of MS patients (17–20). SnoRNAs
are subdivided into the C/D box snoRNAs (SNORDs) that guide
methylation of ribosomal RNA (rRNA) and H/ACA box
snoRNAs (SNORAs) that assist in pseudouridylation of rRNA.
In addition, snoRNAs have been implicated in chromatin remod-
eling, posttranscriptional gene silencing, splicing, and stress re-
sponses (21–23). They can be processed in shorter 17 to 24
nucleotide (nt) fragments of so-called snoRNA-derived RNAs
(sdRNAs) that can exert miRNA-like functions and affect alter-
native splicing (21, 22, 24). Small Cajal body–associated RNAs
(scaRNAs) represent a subset of snoRNAs that participate in the
maturation of another class of sncRNAs (i.e., small nuclear RNAs
[snRNAs]) that, in the form of ribonucleoprotein (U-snRNPs)
complexes, are crucial components of the spliceosome. Increased
levels of abnormally processed U1, U2, U4, U11, and U12
snRNAs, as well as Y1 RNA, have been described in mononuclear
cells of RRMS patients (25). Y RNAs are components of Ro ri-
bonucleoproteins, which are involved in DNA replication (26) and
can release 22 to 36 nt Y RNA-derived small RNAs (ysRNAs) of
yet unknown functions. Beyond their main role in translation,
transfer RNAs (tRNAs) have been shown to be involved in various
other processes, including cellular homeostasis and gene expression
(27). Recent studies have investigated 13 to 35 nt tRNA-derived
fragments (tRFs) as potential biomarkers in other diseases than
MS (28, 29). Some of their roles include miRNA-like functions,
involvement in rRNA biogenesis, and mRNA stability, as well as
mediation of transgenerational effects (30, 31). Overall, studies
investigating these sncRNA classes in the target CNS compartment
in MS are still lacking.
Our objective was to perform a comprehensive sncRNA anal-

ysis in matching PBMCs, plasma, cerebrospinal fluid (CSF) cells,
and cell-free CSF from MS patients and controls. To overcome
issues related to the limited RNA input, particularly in CSF cells
and cell-free CSF, we used the Small-seq method originally de-
veloped for single-cell analysis (32, 33). Our data demonstrate
changes in several classes of sncRNAs, in particular, snRNAs-
derived RNA fragments, sdRNAs, tRFs. and miRNAs, in MS
patients. Moreover, we reveal distinct patterns of sncRNAs across
different compartments of MS patients with important implica-
tions for their functional interpretation.

Results
Detection of sncRNAs. We utilized Small-seq (33), which incor-
porates unique molecular identifiers (UMIs) to quantify sncRNA
transcripts (SI Appendix, Fig. S1A). Libraries were size selected
before sequencing (Materials and Methods and SI Appendix, Fig.
S2) and were analytically separated from potential precursor reads
based on reads length of 18 to 40 nt (51 bp sequencing) (SI Ap-
pendix, Fig. S1B). Technical replication based on new libraries of
three samples from each compartment demonstrated high repro-
ducibility (SI Appendix, Fig. S4). As expected, the average per-
centage of aligned reads was higher in the cellular compartments
compared to biofluids, with the lowest fraction observed in cell-
free CSF (Fig. 1A and SI Appendix, Table S2 and Dataset S1),
similar to previous reports (34, 35).

Considering the size distribution of detected sncRNAs, we
classified unique RNA molecules into several categories: miRNA,
tRF, sdRNA, and ysRNA as well as fragments derived from
snRNA, mRNAs, ribosomal RNAs (rRNAs), long intergenic
ncRNAs, and other sncRNAs (including mitochondrial transfer
RNAs, vault RNAs, signal recognition particle RNAs, ribozymes,
and miscellaneous RNAs) (Fig. 1 B–D and SI Appendix, Fig. S5).
Transcripts mapping to the human genome that could not be
annotated were classified as “unannotated” (Fig. 1B). The de-
tected sncRNAs can represent full sncRNAs or be fragments ac-
tively derived from them. When sequencing CSF cells using longer
read length (101 bp), we observed a small proportion of reads
from miRNA precursors, full tRNAs, and full Y RNAs (Fig. 1E
and SI Appendix, Fig. S2). On the other hand, a large proportion
of reads from full snRNAs and snoRNAs was present (Fig. 1E and
SI Appendix, Fig. S2).
Similar to other studies (35–38), we observed a distinct profile

of sncRNA classes across cellular and biofluid compartments
(Fig. 1 B and C). While miRNAs were the most abundant class of
sncRNAs in PBMCs and plasma (26.4 and 27.9%, respectively),
ysRNAs were dominant in plasma (29.6%), consistent with
previous reports (36, 38). On the other hand, tRFs represented
the most abundant class in CSF cells and cell-free CSF (43.6 and
30.3%, respectively), as previously suggested (35) (Fig. 1B).
Thus, in addition to demonstrating high technical reproducibility
over a range of samples with limited RNA input, Small-seq was
concordant with previous studies in respect to the detected
sncRNAs classes and their relative abundance.

Patterns of sncRNAs in MS Patients.Next, we investigated sncRNAs
in PBMCs, plasma, CSF cells, and cell-free CSF samples from
RRMS (relapse, n = 12 and remission, n = 11) and SPMS (n = 6)
patients, as well as from noninflammatory and inflammatory
neurological disease controls (NINDC, n = 11; INDC, n = 5) (SI
Appendix, Table S1). We first focused on the comparison be-
tween RRMS and NINDC (Dataset S2), representing the groups
of clinical interest with the largest number of individuals, while
relatively small SPMS and INDC groups were only used for a
group-level overview. We then compared the relapse phase of
RRMS, characterized by recent worsening of symptoms and/or
evidence of inflammatory activity in the CNS detected by im-
aging, with remission, a phase of stable symptoms without such
signs (Dataset S3). An overview of the total number of detected
sncRNAs for each class and compartment is summarized in
Table 1, and the most abundant transcripts are provided in SI
Appendix, Tables S3–S7.
Notably, while the majority of differentially expressed sncRNAs

(adjusted [adj.] P < 0.05) were up-regulated in RRMS in the CSF
compartment, they were down-regulated in PBMCs and plasma
compared to NINDC (i.e., displaying an opposing pattern between
the two compartments) (Fig. 2 A and B). In CSF cells, 115 out of
117 differentially expressed sncRNAs were up-regulated in
RRMS, while in PBMCs 65 out of 67 differentially expressed
sncRNAs were down-regulated compared to NINDC (Fig. 2A).
Out of 65 sncRNAs down-regulated in PBMCs, 17 out of 25 tRFs
and 2 out of 7 sdRNAs were significantly up-regulated in CSF cells
in MS (Dataset S2). Comparison of RRMS relapse and remission
showed a prominent mirroring pattern between these groups in
general (Fig. 2C). Moreover, all of the 133 differentially expressed
sncRNAs identified in CSF cells were up-regulated during relapse
in RRMS patients, contrasting with a striking pattern of down-
regulation in PBMCs (Fig. 2 A and C and Dataset S3). Although
only one differentially expressed sncRNA was detected in plasma
and none reached the significance threshold in cell-free CSF, the
patterns generally followed changes observed in the respective
cellular compartments (Fig. 2 B and C).
These observations suggest distinct sncRNAs patterns across

different compartments in MS patients. In the following sections,
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we present a detailed investigation of the most frequently dif-
ferentially expressed sncRNAs. While we report only signifi-
cant sncRNAs (adj. P < 0.05) in the following text, all sncRNAs
with nominal P < 0.01 were included in heatmaps to investi-
gate sncRNA patterns across patient groups and compartments
(Figs. 3–5).

snRNA-Derived RNA Profile. We identified fragments derived from
canonical snRNAs as well as “variant” snRNAs, which are enco-
ded by pseudogenes of multiple snRNAs genes (39). Differentially
expressed snRNA-derived fragments were detected only in the
cellular compartments, likely because of their nuclear localiza-
tion (Fig. 1B). In total, we identified 33 differentially expressed
snRNA-derived fragments (adj. P < 0.05) in PBMCs between
RRMS and NINDC, while in CSF cells, 19 were differentially

expressed (adj. P < 0.05) between RRMS relapse and remission
(Fig. 2A and Datasets S2 and S3).
Three distinct groups were distinguished based on their ex-

pression patterns across compartments (Fig. 3A). Members of
the largest group comprised 31 snRNA-derived fragments (adj.
P < 0.05) that were detected only in PBMCs and displayed down-
regulation in RRMS compared to NINDC (Fig. 3A and Dataset
S2). This group included fragments of canonical and variant/
pseudogene transcripts of U1, U6 clusters, and U11 transcript. A
second, smaller group, comprising fragments of two U1 transcripts
(adj. P < 0.05), was also down-regulated in PBMCs of RRMS but
displayed a clear opposing pattern of up-regulation in CSF cells
compared to NINDC (Fig. 3A). The third and last group com-
prised 19 snRNA-derived fragments (adj. P < 0.05) that were up-
regulated during RRMS relapse compared to remission in CSF

A B C

D

E

Fig. 1. Detection of sncRNAs. (A) Distribution of raw reads, (B) fraction of molecule (UMI) counts, and (C) fraction of genes expressed for different sncRNA
classes across each cellular and biofluid compartment. Filtered (>2 UMI), raw molecule counts across all samples were used. Classes of sncRNAs include miRNAs
and fragments derived from mRNAs, rRNAs, tRFs, sdRNAs, snRNAs, ysRNAs, long intergenic ncRNAs (lincRNA-derived), and other sncRNAs (fragments derived
from mitochondrial transfer RNAs, vault RNAs, signal recognition particle RNAs, ribozymes, and miscellaneous RNAs). (D) Size distribution of sncRNAs in
PBMCs, plasma, CSF cells, and cell-free CSF (51 bp read length). (E) Size distribution of sncRNAs in CSF cells (101 bp read length). See also SI Appendix, Figs. S2
and S5 and Table S2 and Dataset S1.
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cells but tended to be down-regulated in PBMCs (Fig. 3A and
Dataset S3). Both canonical and pseudogene transcripts of the
U2-1 cluster, U4, and U12, as well as the RN7SK transcript,
belonged to this group.
To address whether snRNAs were present both as fragments

and full-length snRNAs in CSF cells, we sequenced CSF cells using
longer read length (101 bp) and performed differential expression
analysis, which we compared with the original CSF cells sequencing
data (51 bp). Longer read length indeed detected a proportion of
reads from full snRNAs (Fig. 1E and SI Appendix, Fig. S2), which
included a number of the differentially expressed snRNAs-derived
fragments. U12, U4, and RN7SK were up-regulated in RRMS
relapse compared to remission and showed a similar pattern to its
corresponding full snRNAs (Datasets S4 and S5). This observation
suggests that in addition to dysregulation of snRNA-derived frag-
ments, it is likely that some of the full snRNAs are correspondingly
dysregulated.
In summary, while U1/U6 transcripts were predominantly de-

tected in PBMCs and showed down-regulation in RRMS com-
pared to NINDC, U2 transcripts were more specific for disease
activity with up-regulation in CSF cells and down-regulation in
PBMCs in relapse compared to remission.

sdRNA Profile. Similar to snRNAs, due to their nucleolar locali-
zation sdRNAs were predominantly identified in cellular com-
partments (Fig. 1B). A total of 7 and 10 differentially expressed
sdRNAs (adj. P < 0.05) were detected between RRMS and
NINDC in PBMCs and CSF cells, respectively. We also identi-
fied 65 differentially expressed sdRNAs between RRMS relapse
and remission in CSF cells (Fig. 2A and Datasets S2 and S3).
The differential expression profile in PBMCs and CSF cells

separated sdRNAs into four distinct groups (Fig. 3B). The first
group included 14 sdRNAs (adj. P < 0.05) that were up-regulated
in RRMS relapse in CSF cells while displaying an opposing pat-
tern of being down-regulated in PBMCs compared to remission
(Fig. 3B, Dataset S3). The group contained sdRNAs that pre-
dominantly participate in modifications of 28S rRNA (SI Appen-
dix, Table S5) and is represented by six H/ACA (including
SNORA7A) and eight C/D box sdRNAs (such as SNORD69).
Similar to the pattern in the first group, members of the second
group, comprising 34 sdRNAs (adj. P < 0.05), were up-regulated
in RRMS relapse compared to remission in CSF cells but, in

contrast to the first group, displayed no clear differences in
PBMCs (Fig. 3B). This group consisted predominantly of C/D box
sdRNAs, including the U22 locus sdRNAs (SNORD25 and
SNORD27).
The third group comprised 17 sdRNAs (adj. P < 0.05) that were

up-regulated in RRMS relapse compared to remission in CSF
cells, similar to the first two groups (Fig. 3B and Dataset S3). They
all showed a clear pattern of up-regulation in RRMS compared to
NINDC in CSF cells, with 9 out of 17 being significantly different
(adj. P < 0.05). However, they displayed an opposing pattern in
PBMCs reflecting predominant down-regulation in RRMS com-
pared to NINDC, with 5 out of 17 displaying significant difference
(adj. P < 0.05). This group comprised C/D box sdRNAs, including
another two U22 locus sdRNAs (SNORD26 and SNORD30) and
two H/ACA box sdRNAs (SNORA73A and SNORA73B). The last
and fourth group was only expressed in PBMCs and exhibited the
same pattern as the previous group, including C/D box sdRNA
SNORD23 and SCARNA6 (adj. P < 0.05) that were down-
regulated in RRMS compared to NINDC (Fig. 3B and Dataset S2).
To address whether snoRNAs were present both as fragments

and full-length snoRNAs in CSF cells, we compared the longer
read length (101 bp) with the original CSF cells sequencing data
(51 bp). We observed a large proportion of full snoRNA reads in
CSF cell libraries using longer read length (Fig. 1E and SI Ap-
pendix, Fig. S2). A large fraction of differentially expressed sdRNAs
demonstrated a similar pattern of change for the corresponding
full snoRNAs (Datasets S4 and S5). This suggests that what we
observe likely represents dysregulation of both full snoRNAs as
well as their fragments.
Thus, the vast majority of differentially expressed sdRNAs and

snoRNAs were up-regulated in CSF cells from RRMS patients,
specifically during the relapse phase, while the same sdRNAs
and snoRNAs were frequently down-regulated compared to
NINDC controls in PBMCs.

tRF Profile. Contrary to snRNAs and snoRNAs, we detected
fragments of tRNAs almost exclusively (i.e., tRFs) (Fig. 1 D and
E). We detected 25 and 91 differentially expressed tRFs (adj. P <
0.05) between RRMS and NINDC in PBMCs and CSF cells,
respectively (Fig. 2A and Dataset S2). In total, 10 tRFs displayed
differential expression (adj. P < 0.05) between RRMS relapse
and remission in CSF cells (Fig. 2A and Dataset S3). For further

Table 1. Total number of detected sncRNA fragments in each class across four compartments

PBMC Plasma CSF cells CSF

RRMS versus NINDC analysis
Total sncRNA fragments 1,673 (100%) 539 (100%) 469 (100%) 265 (100%)
miRNA 459 (27%) 212 (39%) 91 (19%) 62 (23%)
tRF 395 (24%) 157 (29%) 200 (43%) 120 (45%)
sdRNA 303 (18%) 8 (1%) 58 (12%) 0 (NA)
snRNA-derived 181 (11%) 25 (5%) 33 (7%) 1 (0%)
ysRNA 212 (13%) 82 (15%) 30 (6%) 30 (11%)
Other sncRNA 41 (2%) 13 (2%) 10 (2%) 1 (0%)
5S, 5.8S rRNA-derived 82 (5%) 42 (8%) 47 (10%) 51 (19%)
Relapse versus remission analysis
Total sncRNA fragments 1,706 (100%) 617 (100%) 597 (100%) 334 (100%)
miRNA 475 (28%) 224 (36%) 117 (20%) 82 (25%)
tRF 395 (23%) 178 (29%) 227 (38%) 159 (48%)
sdRNA 308 (18%) 7 (1%) 93 (16%) 0 (NA)
snRNA-derived 188 (11%) 31 (5%) 44 (7%) 1 (0%)
ysRNA 217 (13%) 112 (18%) 42 (7%) 36 (11%)
Other sncRNA 40 (2%) 19 (3%) 16 (3%) 1 (0%)
5S, 5.8S rRNA-derived 83 (5%) 46 (7%) 58 (10%) 55 (16%)

A total number of detected sncRNA fragments in each class and number counted after the filtering threshold
of two UMIs. Percentages represented by each sncRNA fragment class are shown in parenthesis after total
numbers. NA, not available/detected.
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analysis, we grouped tRFs based on their amino acid origin (SI
Appendix, Fig. S5) and separated them into two main groups
based on their differential expression patterns across compartments
(Fig. 4A).
The first group of tRFs, coding for Lys, Glu, Pro, His, Ala, and

Arg, was characterized by strong dysregulation between RRMS
and NINDC and a contrasting pattern between CSF cells and
PBMCs (Fig. 4A). A total of 19 Lys tRFs (both TTT and CTT
isoacceptors) were up-regulated in RRMS (adj. P < 0.05) in CSF
cells, most of them (17 out of 19) displaying down-regulation
compared to NINDC in PBMCs (Fig. 4A and Dataset S2). In
addition, 10 Glu (both CTC and TTC isoacceptors), 11 Pro (all
isoacceptors), 3 His (GTG), and 4 Ala (TGC, CGC, AGC) tRFs
were elevated in RRMS compared to NINDC (adj. P < 0.05) in
CSF cells. In contrast, the vast majority of aforementioned tRFs
displayed a clear trend for down-regulation in RRMS compared
to NINDC in PBMCs (Fig. 4A and Dataset S2). Several of the Lys,
Glu, and Pro tRFs were also detected in cell-free CSF and plasma,
where their pattern mirrored the corresponding cellular com-
partments (i.e., CSF cells and PBMCs) (Fig. 4A and Dataset S2).
The second group of tRFs, coding for Met, Cys, Gly, and Val,

displayed significant differential expression only in CSF cells (Fig.
4A and Dataset S2). The levels of 9 Met tRFs (involved in initi-
ation and elongation) were significantly higher in RRMS com-
pared to NINDC (adj. P < 0.05). Additionally, 5 Cys, 13 Gly
(GCC, TCC, and CCC isoacceptors), and 16 Val (all isoacceptors)

tRFs displayed the same pattern of up-regulation in RRMS
compared to NINDC in CSF cells (adj. P < 0.05). Several of the
Gly and Val tRFs were also detected in cell-free CSF, where their
pattern mirrored the pattern in CSF cells (Fig. 4A and Dataset S2).
Considering that we almost exclusively detected tRFs, we used

MINTmap (40) to further analyze tRFs, which map exclusively to
the “tRNA space.” In total, 7,894, 5,803, 2,454, and 2,845 tRFs
were detected in PBMCs, plasma, CSF cells, and CSF, respec-
tively, with the tRF length distribution varying across compart-
ments (SI Appendix, Fig. S7A). MINTmap annotated five
different tRF subtypes: 5′-half, 5-tRFs, i-tRFs, 3′-tRFs, and 3′-
half. PBMCs, plasma, and cell-free CSF displayed similar tRF
subtype distribution with 3′-tRFs being the most abundant (Fig.
4B). CSF cells were, on the other hand, predominantly com-
posed of 5′-half tRFs, while 3′-half tRFs were rare in all com-
partments (Fig. 4B and SI Appendix, Fig. S7B). We have further
investigated tRF composition using MINTmap for the most sig-
nificantly changed tRFs found previously in CSF cells and PBMCs
(Fig. 4 C and D). A similar tRF composition profile was observed
for the differently expressed Met and Lys tRF isodecoders in CSF
cells (Fig. 4C). Interestingly, the eight significantly dysregulated
Lys tRFs in PBMCs represented three different tRF profiles
(Fig. 4D).
Taken together, differentially expressed tRFs were particularly

enriched in CSF cells and displayed extensive up-regulation in
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Fig. 2. sncRNA fragments associating with MS status and phase across four compartments. SncRNAs in PBMCs, CSF cells, plasma, and cell-free CSF from RRMS
(n = 12 in relapse, n = 11 in remission), SPMS ( n = 6), NINDC (n = 11) and INDC (n = 5). (A) Volcano plots illustrate differences in classes of sncRNAs, depicted in
different colors, between RRMS versus NINDC and relapse versus remission. The y- and x-axes depict −log10(P value) and log2(fold-change), respectively.
Colored circles indicate significant sncRNAs (adj. P value < 0.05); miRNAs and fragments of rRNA-derived, snRNA-derived, sdRNAs, tRFs, ysRNAs, and other
sncRNAs (other); ns, not significant. Heatmaps of sncRNAs between (B) RRMS versus NINDC and (C) relapse versus remission (adj. P value < 0.05). Normalized
Z-score (fitted log2-transformed UMI counts per million [lcmp]) values were centered and scaled for each compartment separately, with relative high levels
illustrated in red, low levels in blue, and intermediate in purple (see color key). Row-wise hierarchical clustering was conducted based on RRMS-derived
transcripts in PBMCs or CSF cells after subclustering NAs (white block), representing transcripts that did not pass the filtering threshold. Column-wise hier-
archical clustering was conducted separately within each compartment and patient group.
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RRMS patients compared to controls, which contrasted with
their unchanged or down-regulated profile in PBMCs.

miRNA Profile.A total of 13 differentially expressed miRNAs (adj.
P < 0.05) were detected between RRMS and NINDC: 10 in CSF
cells, 2 in PBMCs, and 1 in plasma (Fig. 2A and Dataset S2). In
addition, 33 miRNAs were differentially expressed (adj. P < 0.05)
between relapse and remission in CSF cells of RRMS patients
(Fig. 2A and Dataset S3).
Based on the miRNA expression profile across compartments,

we differentiated two main groups of miRNAs (Fig. 5A). Mem-
bers of the first group of miRNAs were differentially expressed
between RRMS and NINDC across multiple compartments (Fig.
5A and Dataset S2). A set of 10 miRNAs within this group also
differed in CSF cells (adj. P < 0.05), with miR-146a-5p, miR-148a-
3p, miR-150–5p, miR-181a-5p, miR-29a/b-3p, and miR-342–3p
being up-regulated, while miR-204–5p and miR-371a-3p were
down-regulated in RRMS compared to NINDC. In PBMCs, two
miRNAs, including miR-548o-3p, were significantly up-regulated
(adj. P < 0.05) in RRMS compared to NINDC, with many other
miRNAs showing the same trend (Fig. 5A). In contrast, plasma
miRNAs displayed predominant down-regulation, with miR-215–5p
being significantly down-regulated (adj. P < 0.05) in RRMS com-
pared to NINDC (Fig. 5A and Dataset S2).
Members of the second group were predominantly up-regulated

in the relapse phase in PBMCs, plasma, and, in particular, in CSF
cells, where 33 miRNAs were significantly up-regulated in relapse
compared to remission (adj. P < 0.05) (Fig. 5A and Dataset S3).
This group included miR-125a-5p, miR-146a/b-5p, miR-150–5p,

miR-155–5p, miR-181a-5p, miR-21–3p, and miR-320a, together
with several members of the let-7 family, such as let-7a/d/f/i-5p.
Interestingly, a subset of them, including miR-21–5p, miR-92a-3p
and let-7 members, displayed an opposing pattern in cell-free CSF
and CSF cells between relapse and remission (Fig. 5A and
Dataset S3).
To explore the possible functional implications, we performed

ingenuity pathway analysis (IPA) on predicted targets of the most
frequently differentially expressed miRNAs (i.e., the 33 miRNAs
in CSF cells that were up-regulated in RRMS relapse compared to
remission). Many of the identified (adj. P < 0.05), immune-related
pathways concerned activation of T and B cells, as well as cytokine
and chemokine signaling, with transforming growth factor beta
(TGF-β) signaling being the most significantly enriched pathway
(Fig. 5B).
The miRNA profile thus underscores a general up-regulation

of miRNAs in RRMS, particularly in CSF cells during the re-
lapse phase, with possible implications for regulation of T and
B cell activation and differentiation.

Other sncRNAs. We also observed changes in the expression level
of other sncRNAs between RRMS and NINDC (Fig. 2A and
Dataset S2). Additionally, significantly higher levels of signal rec-
ognition particle RNA transcript (RN7SL1), as well as RNA com-
ponent of mitochondrial RNA processing enzyme complex (RNase
MRP RNA) and mitochondrially encoded tRNA-Met–derived tRF
were found in CSF cells during RRMS relapse compared to re-
mission (adj. P < 0.05, Dataset S3).
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Fig. 3. snRNA- and snoRNA-derived fragments associating with MS status and phase across intracellular compartments. Heatmaps of (A) snRNA-derived and
(B) snoRNA-derived (sdRNA) fragments in PBMCs and CSF cells from RRMS (n = 12 in relapse, n = 11 in remission), SPMS (n = 6), NINDC (n = 11), and INDC (n =
5). Transcripts between RRMS versus NINDC and/or relapse versus remission (P < 0.01) were included. Distinct groups of snRNA-derived RNAs and sdRNAs are
depicted by the vertical lines, and representative molecules to the right of each heatmap were differentiated based on their profile in PBMCs and CSF cells.
Heatmaps contain normalized Z-score (fitted lcmp) values were centered and scaled for each compartment separately, with relatively high levels illustrated in
red, low levels in blue, and intermediate in white (see color key). Row-wise hierarchical clustering was conducted based on PBMC and/or CSF cell RRMS-derived
transcripts after subclustering NAs (white block), representing transcripts that did not pass the filtering threshold. Column-wise hierarchical clustering was
conducted separately within each compartment and patient group.
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Biological Functions Implicated by Changes in Protein-Coding RNAs.
In addition to sncRNAs, we investigated mRNA changes in CSF
cells in a subgroup of individuals, 11 RRMS (relapse = 7 and
remission = 4) and NINDC (n = 6), from the same cohort by
total RNA sequencing (Dataset S6). To get an overview of bio-
logical functions associated with dysregulated transcripts, we
conducted IPA analysis. Top significantly enriched canonical path-
ways between RRMS and NINDC include eukaryotic translation

initiation factor 2 (EIF2) signaling, regulation of eIF4 and p70S6K
signaling and mammalian target of rapamycin (mTOR) signaling,
NRF2-mediated oxidative stress response, sirtuin signaling path-
way and HIF1α signaling (Fig. 6A) with significantly enriched bi-
ological functions associated with protein synthesis, cell death and
survival, cellular movement, and RNA damage and repair (Fig. 6B),
among others. The same pathways and biological functions were
confirmed using previously published transcriptome data from

A

B C D

Fig. 4. tRFs associating with MS status and phase across four compartments. (A) Heatmap of tRFs in PBMCs, plasma, CSF cells, and cell-free CSF from RRMS
(n = 12 in relapse, n = 11 in remission), SPMS (n = 6), NINDC (n = 11) and INDC (n = 5). Selected transcripts between RRMS versus NINDC and/or relapse versus
remission (P value < 0.01) in PBMCs and CSF cells were included. tRFs were grouped based on amino acid origin, depicted by vertical lines with representative
amino acid and tRNA anticodon(s) to the right of the heatmap. Two distinct groups of tRFs, depicted by second vertical lines and representative amino acid to
the right of the heatmap, were differentiated based on the tRF profile in PBMCs and CSF cells. The heatmap contains normalized Z-score (fitted lcmp) values
that were centered and scaled for each compartment separately, with relatively high levels illustrated in red, low levels in blue, and intermediate in white (see
color key). Row-wise hierarchical clustering was based on PBMC and CSF cell compartments after subclustering based on amino acid origin. NAs (white block)
represent transcripts that did not pass the filtering threshold. Column-wise hierarchical clustering was conducted separately within each compartment and
patient group. (B) Distribution of different tRF subtypes was as follows: 5′-half, 5′-tRFs, i-tRFs, 3′-tRFs, and 3′-half, annotated using MINTmap. Reads per
million (RPM) counts across all samples were used to analyze the distribution of different tRF subtypes in each compartment. See also SI Appendix, Fig. S7.
(C) tRF subtype composition for the 10 most significantly dysregulated tRFs in CSF cells between RRMS and NINDC. (D) tRF subtype composition for the 10 most
significantly dysregulated tRNAs in PBMC between RRMS and NINDC.
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CSF cells from an independent larger cohort (41) of RRMS (n =
26) and NINDC (n = 18) patients (Fig. 6 A and B). Interestingly,
there was a large overlap with biological pathways and functions
enriched in mRNA fragments from PBMCs identified using
Small-seq (SI Appendix, Fig. S8).
Moreover, levels of protein biomarkers measured in CSF (42)

were correlated with sncRNA levels in CSF cells in overlapping
samples (n = 22). Protein levels of eIF4E-binding protein 1 (4E-
BP1) and stem cell factor (SCF), involved in several pathways
mentioned above (EIF2 signaling, regulation of eIF4 and p70S6K
signaling, and mTOR signaling) positively correlated with nu-
merous Gly and Pro tRFs (Dataset S7). The highest correlations
were observed between tRNA6-ProCGG_1 and 4E-BP1 and SCF
(Fig. 6C).
Thus, additional evidence from protein-coding mRNA and

protein analyses implicates sncRNAs in pathways associated with
translation.

Discussion
We performed a comprehensive sncRNA analysis in blood and
CNS compartments from matching samples of MS patients and
controls utilizing Small-seq (32, 33). Our main findings demon-
strate widespread alterations of several classes of sncRNAs, par-
ticularly during the relapse phase in CSF cells. Furthermore, we
report an opposing pattern of snRNA, sdRNA, and tRF changes
between the blood and CNS compartments. The patterns across
several sncRNA species implicate changes in the general cellular
mechanisms, such as alternative splicing and mRNA translation,

occurring, for example, during lymphocyte activation, while cyto-
kine signaling pathways critical for T helper differentiation were
more selectively modulated by miRNAs. Collectively, these ob-
servations underscore the relevance of studying the CSF com-
partment in a CNS disease such as MS, with CSF reflecting more
closely disease processes occurring in the target organ (43), in-
cluding enrichment of encephalitogenic immune cell populations
(44, 45).
We detected predominant up-regulation of snRNAs in CSF

cells and down-regulation in PBMCs from RRMS patients com-
pared to controls. We also observed increased levels of multiple
U1, U2, U4, and U12 snRNA transcripts in CSF cells during the
relapse phase. An altered level of U2-associated protein SR140
has previously been detected in CSF cells of MS patients com-
pared to NINDC (41). Similar to our observations in PBMCs,
diminished global levels of U1, U5, and U6 transcripts have been
reported in PBMCs of RRMS (41), consistent with alteration of
several scaRNAs and snoRNAs that guide posttranscriptional
modifications of U2, U5, and U6 snRNAs (SI Appendix, Table
S5). Since snRNAs are crucial regulators of alternative splicing,
this strongly suggests disturbances in mRNA splicing, which has
already been noted in MS (46). Indeed, activation of both T and
B cells initiates global alternative splicing events in multiple genes
of the NF-κB, mitogen-activated protein kinases and Rho GTPase
signaling and cell proliferation pathways (47). Several splicing
factors were found altered in MS (48), including factors that
participate in the assembly of the aforementioned snRNAs in
spliceosome units. Accordingly, our analysis of mRNA fragments
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Fig. 5. miRNAs associating with MS status and phase across four compartments. (A) Heatmap of miRNAs in PBMCs, plasma, CSF cells, and cell-free CSF from
RRMS (n = 12 in relapse, n = 11 in remission), SPMS (n = 6), and NINDC (n = 11) and INDC (n = 5). Transcripts between RRMS versus. NINDC and/or relapse
versus remission (P value < 0.01) were included. Two distinct groups of miRNAs, depicted by the vertical lines and representative molecules to the right of the
heatmap, were differentiated based on the miRNA profile across the compartments. The heatmap contains normalized Z-score (fitted lcmp) values, which
were centered and scaled for each compartment separately, with relatively high levels illustrated in red, low levels in blue, and intermediate in white (see
color key). Row-wise hierarchical clustering was conducted based on CSF, CSF cell, or PBMC RRMS-derived transcripts (relapse versus remission) after sub-
clustering based on NAs (white block), representing transcripts that did not pass the filtering threshold. Column-wise hierarchical clustering was conducted
separately within each compartment and patient group. (B) Significant immune-related canonical pathways (Benjamini–Hochberg-corrected P value < 0.05)
generated using IPA on predicted target genes of miRNAs differentially expressed between relapse versus remission in CSF cells.
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also revealed decreased levels of transcripts deriving from two
splicing factors, SNRPB and RBFOX2, in PBMCs of RRMS pa-
tients (Dataset S4). Altered RNA splicing in MS is consistent
with increased levels of the long noncoding RNA MALAT1, af-
fecting the expression of splicing factors HNRNPF and
HNRNPH1, described in blood of RRMS patients (49). Interest-
ingly, in our study, while MALAT1-associated small cytoplasmic
RNA (mascRNA) was down-regulated in PBMCs of RRMS pa-
tients, levels of mascRNA were augmented in CSF cells in RRMS
compared to controls (Dataset S4).

Alterations in alternative splicing mechanisms are further
supported by the observed changes of snoRNAs, which exert
noncanonical functions in mRNA processing (51, 52). Most of
the sdRNAs exhibited down-regulation in PBMCs of RRMS
compared to controls, which is in agreement with previous
studies reporting predominant down-regulation of snoRNAs in
CD3+ T cells and PBMCs of MS patients (7). Notably, similar to
the snRNA profile, these sdRNAs demonstrated the opposite
pattern in CSF cells compared to PBMCs, with up-regulation in
CSF cells in RRMS compared to controls, particularly during the
relapse phase. Such a pattern was observed for several U22 locus
sdRNAs, including SNORD27, previously shown to regulate al-
ternative splicing and to activate silent exons (50), thereby po-
tentially contributing to the splicing defects implicated in MS.
Notably, the majority of snoRNAs are encoded inside the introns
of protein-coding genes, and their expression may be altered
because of frequent intron retention due to splicing impairment.
Finally, altered alternative splicing is also concordant with changes
in miRNAs that can target alternative splicing factors. For ex-
ample, miR-181a-5p, found up-regulated in CSF cells of RRMS
patients, targets a member of the serine/arginine (SR)-rich family
of splicing factor, SRSF7 (51). Overall, we show accumulating
evidence from different sncRNA classes for aberrant alternative
splicing mechanisms in MS.
Other dysregulated snoRNAs exert their canonical function by

assisting with rRNA modifications essential for accurate ribo-
some function. Elevated levels of misprocessed 18S and 28S
rRNAs have previously been reported in RRMS (25). The ma-
jority of detected sdRNAs are encoded inside structural ribo-
somal proteins, elongation factors, and translational regulators
(SI Appendix, Table S5) (52, 53) controlled by the mTOR
pathway (54). Since the transcription of such genes is activated
when intensive protein production is required, the detected sdRNA
alterations may reflect global changes in expression of translational
machinery genes. Accordingly, our protein-coding RNA-sequencing
analysis and previous independent data (41) implicate EIF2 sig-
naling as the top enriched canonical pathway, together with changes
in many ribosomal structural proteins and translational initiation
factors in CSF cells of RRMS compared to controls.
Global changes in translation in RRMS patients are further

supported by strong alterations of tRFs. Most of the Lys, Glu,
Pro, His, and Ala tRFs were found up-regulated in CSF cells
from RRMS compared to controls. Additionally, Met, Cys, Gly,
and Val tRFs displayed robust up-regulation in CSF cells in
RRMS as well as during the relapse phase. Similar to snRNAs
and sdRNAs, tRFs changes in PBMCs exhibited the opposite
direction (i.e., the majority of tRFs displayed down-regulation in
PBMCs of RRMS patients). We observed specifically elevated
levels of 5′-half tRFs that can target translation initiation ma-
chinery and inhibit translation (55) in response to stress condi-
tions in CSF cells of RRMS patients. Elevated levels of specific
tRFs in CSF cells may reflect adaptation to specific inflamma-
tory conditions (56, 57) that initiate changes in protein profile
synthesis and abundancy. It may also be a compensatory mech-
anism for excessively activated translation in RRMS.
The changes in tRFs, sdRNAs, and snRNAs may be linked to

changes in mTOR activity known to facilitate cellular growth and
proliferation. Indeed, in our study, the analysis of mRNAs in
CSF cells implicated eIF4 and ribosomal protein S6 kinase 1
(S6K1/p70S6K) signaling as well as mTOR signaling among the
most significant canonical pathways. One of the mTOR complexes,
mTORC1, promotes mRNA translation and elongation through
S6K1 and eIF4E-binding protein 1 as well as by increasing rRNA
and tRNA transcription (58). Moreover, numerous differentially
expressed tRFs from CSF cells correlated with CSF levels of 4E-
BP1 and SCF. Both mTOR-dependent as well as SCF-dependent
4E-BP1 phosphorylation result in its release from eIF4E, lead-
ing to initiation of protein translation (59). Some evidence also
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suggests the involvement of the mTORC1 complex in U-snRNP
biogenesis (60). Additionally, we revealed in CSF cells alterations
in metabolic pathways, such as the sirtuin signaling pathway, oxi-
dative stress response, and hypoxia-inducible factor 1α (HIF1α)
signaling in RRMS patients, that are all mediated by mTOR
pathway (61). Taken together, the striking up-regulation of all of
the above classes of sncRNAs in CSF cells, particularly in the re-
lapse phase, is consistent with activation of mTOR signaling in
activated and proliferating cells enriched in the target organ. In
line with this, antigen recognition triggers mTOR signaling via the
PI3K-Akt pathway and directs differentiation of naïve T cells into
TH1, TH2, and TH17 cells but inhibits differentiation of TREG cells
(61, 62). Increased levels of leptin, a hormone that activates
mTOR signaling (63), has been reported in the CSF of RRMS
patients, where leptin levels correlated with a reduced number of
TREGS (64). Additionally, the hyporesponsiveness of TREGS from
RRMS patients in vitro and in vivo is associated with activation of
the leptin-mTOR metabolic pathway (65).
It is difficult to speculate to what degree the changes we ob-

served are explained by changes occurring in encephalitogenic
cells, enriched in the CSF compartment, and what is due to regu-
latory mechanisms in the larger population of nonencephalitogenic
cells mainly located in the blood compartment. Another level of
complexity relates to the temporal dynamics in the regulation of
immune cells during the course of MS. For example, autoprolif-
eration of bona fide encephalitogenic T and B cell clones is down-
regulated in blood from MS patients in relapse compared to
remission (66). Nevertheless, the identified changes in components of
snRNA-mediated splicing machinery in PBMCs substantiate pre-
viously described alternative splicing disturbances in peripheral
blood of MS patients and collectively concur to general distur-
bances of these processes in immune cells of MS patients (46) (Fig.
7). Conversely, changes in snoRNA- and tRNA-mediated mRNA
translation mechanisms were more conspicuous in CSF cells. In
MS, CSF cells preferentially include CCR7-expressing memory
CD4+ T cells, characterized by up-regulation of genes involved in
T cell activation as opposed to down-regulation of genes associated
with naïve cell state (41, 45, 67). Our observations are in accor-
dance with a recent single-cell study comparing CSF cells and
blood cells of MS patients during relapse (45). In blood cells, they
demonstrated an increased transcriptional diversity compared to
CSF cells, reflected by an increased proportion of differentially
expressed genes across different cell clusters, while CSF cells show
an up-regulation of cell cycle genes such as CCNC and Cyclin-C
(45). In addition, most of the altered snRNAs, sdRNAs, and tRFs
had a tendency of being decreased in PBMCs but increased in CSF
cells of RRMS compared to INDC, which comprised systemic lu-
pus erythematosus (SLE) patients (Figs. 3 and 4). Therefore, one
can speculate that while in RRMS patients, there is an enrichment
of activated proliferating cells with activated mTOR in the CSF
compartment (Fig. 7), in SLE patients they may be directed to
other organs.
In contrast to most sncRNAs, miRNAs did not display di-

vergent changes between periphery and CNS. This observation
supports the notion that inflammation triggers expression of
miRNAs in multiple cell types, although the outcome of this up-
regulation will strongly depend on the target mRNA content of
the host cell. Interestingly, although miRNAs have been the most
thoroughly studied sncRNA class to date, differentially expressed
miRNAs constitute only a fraction of the altered sncRNAs in MS.
Most of the differentially expressed miRNAs were detected in
CSF cells during RRMS relapses, with a similar pattern across
other compartments. Many of these miRNAs have previously
been found to be up-regulated in peripheral immune cells from
MS patients, that is, PBMCs and blood cells (e.g., miR-125a-5p,
miR-146a-5p, miR-155–5p, miR-362–5p, and let-7d-5p) and
CD4+ T cells (miR-155–5p, let-7i-5p, and miR-486–5p) (7). Ad-
ditionally, several miRNAs up-regulated in CSF cells in relapse,

compared to remission, have also been found dysregulated in the
CNS tissue of MS patients: in inactive lesions (miR-155–5p, miR-
30d-5p, and miR-532–5p), active lesions (miR-146b-5p, miR-320a,
miR-142–5p, and miR-21–3p), demyelinated hippocampi (miR-
30d-5p and let-7f-5p), and cell-free CSF (miR-21–3p and miR-
191–5p) (7). Altogether, these findings suggest that infiltrating
immune cells are likely the main cellular source of these CNS-
detected miRNAs, although resident CNS cells might be an ad-
ditional source. Interestingly, IPA analysis of the predicted targets
of differentially expressed miRNA between relapse and remission
unveiled TGF-β signaling as the most significant pathway. This is
in line with previous studies suggesting miRNA-mediated alter-
ations of TGF-β signaling, implicated in differentiation of both
TREG and TH17 lineages, in MS (7, 68). Multiple detected miR-
NAs have been shown to target TGF-β signaling, including
relapse-associated miR-21–3p, known to target RBPMS (69),
which regulates TGF-β signaling by increasing transcriptional ac-
tivity of Smad2/3 (70). Another example is miR-92a, also up-
regulated in CSF cells during RRMS relapses, which targets SP1
(71) and has been shown to interact with Smad2/3/4 (72). Together
with previous studies (7, 68), our findings position TGF-β signaling
as a pivotal mechanism in the immunopathogenesis of MS.
In conclusion, our study demonstrates prominent cellular changes

in several classes of sncRNAs with substantial changes correlating
with disease status (RRMS versus NINDC) and disease activity
(relapse versus remission), likely reflecting enrichment of activated
encephalitogenic cells in the target organ. Contrasting differentially
regulated sncRNA species between the blood and CSF compart-
ments and between relapse and remission highlights the importance
of sncRNA-mediated mechanisms—in particular, alternative splic-
ing, mRNA degradation, and translation—in shaping up the tran-
scriptome and function of pathogenic cells in MS.

Materials and Methods
For detailed information and protocols, see SI Appendix.
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Patients. A total of 23 RRMS and 5 SPMS patients, 5 INDCs, and 11 NINDCs
(a total of 44 samples) were included, of which matching PBMC, plasma, CSF
cells, and cell-free CSF samples were used. Detailed cohort characteristics are
presented in SI Appendix, Table S1. The study was approved by the Regional
Ethical Board (2009/2107–31/2). All patients signed the informed consent.

Sample Preparation.
Preparation of cell-free CSF and CSF cells. CSF was centrifuged immediately after
lumbar puncture at 440 g for 10 min at room temperature (RT) to separate
cells from supernatants, then stored at −80 °C. For details, see SI Appendix.
Plasma preparation. Blood was centrifuged at 1,500 g for 15 min at RT. The
plasma phase was stored at −80 °C.
Preparation of peripheral blood cells. Blood samples were centrifuged at 1,500 g
for 15 min at RT. The plasma layer was aspirated, and the cell layer was
washed with 15 mL phosphate-buffered saline (PBS) and centrifuged at
300 g for 15 min at RT. The pellet was resuspended in 3 mL PBS, centrifuged
at 300 g for 10 min at RT followed by aspiration of supernatants, and then
stored at –80 °C. For details, see SI Appendix.

RNA Extraction.
RNA isolation from cell-free CSF and plasma samples. RNA was isolated from
300 μL of plasma or CSF using miRCURY RNA isolation kit for biofluids (Exiqon).
RNA was eluted with 15 μL and 20 μL of RNase-free water for CSF and plasma
samples, respectively, and stored at −80 °C. For details, see SI Appendix.
RNA isolation from CSF cells and PBMCs. CSF cells and PBMCs were resuspended
in 900 μl QIAzol Lysis Reagent (Qiagen) and 180 μL of Chloroform (Merck).
RNA was isolated using miRNeasy micro kit (Qiagen). RNA was eluted with
15 μL and 40 μL of RNase-free water for CSF cell and PBMC samples, re-
spectively, and stored at −80 °C. For details, see SI Appendix.

Library Preparation and Sequencing.
sncRNA library preparation and sequencing. Library preparation for all 44 samples
from each compartment (PBMCs, plasma, CSF cells, and cell-free CSF) mostly
followed the described protocol (32, 33). Libraries were pooled for each
compartment and purified. Automatic size selection was performed using
the Pippin Prep (Sage Science, Inc.). Each pool was sequenced on two lanes
of Illumina HiSeq2500 single-end 1 × 51 bp (SI Appendix, Fig. S9A). Addi-
tionally, the CSF cell samples pool without Pippin Prep size selection was
sequenced 1 × 101 bp single-end on an Illumina HiSeq2500 (SI Appendix, Fig.
S9C). For details, see SI Appendix.
Technical replication. PBMCs, plasma, CSF cells, and cell-free CSF samples (n = 3
per compartment and n = 12 in total) were chosen from the same cohort;
libraries were prepared following the above-described protocol and se-
quenced 1 × 101 bp single-end on an Illumina HiSeq2500 Rapid mode lane
(SI Appendix, Fig. S9B).
CSF cells library preparation and total RNA sequencing. Libraries were generated
from CSF cells of RRMS (relapse n = 7 and remission n = 4) and NINDC (n = 6)
with SMARTer stranded total RNA-seq Pico input mammalian kit (Clontech
Laboratories) and sequenced 2 × 151 bp paired-end on Illumina Nova-
Seq6000 (SI Appendix, Fig. S9D).

Data Analysis.
Preprocessing and read alignment. Preprocessing and alignment of reads was
done according to Hagemann–Jensen et al. (33). For details, see SI Appendix.

Length distribution analysis. To investigate length distribution of sncRNAs,
sequences in the final preprocessed BAM files were filtered based on re-
quiring 50% reciprocal overlap with selected biotypes using the BEDTools
intersect function.
Transcript filter. Transcripts with less than 2 UMIs in more than 80% of indi-
vidual samples per contrasted group (i.e., RRMS, NINDC, relapse, and re-
mission) were filtered out. For details, see SI Appendix.
Normalization. Filtered transcripts were normalized with trimmed mean of M
values method. For details, see SI Appendix.
Detection of differentially expressed transcripts. Differential expression analysis
was performed utilizing the limma package. The linear model for the first
analysis (contrast RRMS–NINDC) included the following: disease status (NINDC,
INDC, RRMS, and SPMS), sex, age, and repeated individual (one SPMS patient
was sampled twice 1 y apart), and the second analysis (contrast relapse–
remission) included RRMS status (relapse and remission), sex, and age. For
details, see SI Appendix.
Heatmaps.Hestat Heatmaps illustrate Z-score (fitted, normalized log2-transformed
UMI counts/million [lcmp]) values from transcripts filtered based on reported
(Benjamini–Hochberg corrected) P value threshold < 0.01 and were centered
and scaled within each compartment.
tRF analysis using MINTmap. Trimmed reads were mapped to the tRNA refer-
ence set (tRNA space) using MINTmap (40). For details, see SI Appendix.
CSF cells total RNA sequencing analysis. CSF cells total RNA libraries (n = 17) were
preprocessed with TrimGalore, mapped with STAR against hg38, and an-
notated using featureCounts with Ensemble GRCh38. Differential expression
analysis was performed with DESeq2. For details, see SI Appendix.
Microarray data. Gene expression profiling was performed on paired PBMC
and CSF samples of RRMS patients (relapse n = 12 and remission n = 14),
without immunomodulatory treatment, and NINDC (n = 18) using Human
Genome U133 plus 2.0 arrays (Affymetrix). For details, see SI Appendix.
Gene ontology analyses. Gene ontology analysis was performed using IPA
(Qiagen) to generate canonical pathways and diseases and functions. For
details, see SI Appendix.

Data Availability. The RNA-seq data used for sncRNA analyses is available in
the Swedish National Data Service (https://doi.org/10.5878/c1mq-9r62) (73).
Anonymized RNA-seq data have been deposited in the Swedish National
Data Service.
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