1,314 research outputs found
Neutron radiography study of laboratory ageing and treatment applications with stone consolidants
A nano-silica consolidant and nano-titania modified tetraethyl-orthosilicate were applied on two building stones, a carbonate and a silicate, by brush, poultice or capillary absorption. Neutron radiography was used to monitor capillary water absorption, and to analyse changes in physical properties caused by heat treatment of specimens for the purposes of artificially ageing and different treatment applications with stone consolidants. Moreover, ultrasonic pulse velocity and gravimetrically determined water absorption were analysed to cross-validate neutron radiography. The results reveal that reactive systems like tetraethyl-orthosilicates need an unknown period for polymerisation, which makes nano-silica consolidants more favourable for construction follow-up work. While polymerisation is incomplete, hydrophobic behaviour, water trapping and pore clogging are evident. Within the tetraethyl-orthosilicate treatment, poultice and brushing are strongly influenced by the applicant, which results in wide ranging amounts of water absorbed and anomalous water distributions and kinetics. The carbonate lithotype displays polymerisation initiated in the core of the specimen, while the lateral surfaces are still mostly hydrophobic. Reaction time differences can be attributed to the different amounts of consolidants applied, which is a result of the chosen application settings. Artificial ageing of stone specimens is a prerequisite when mechanical strength gain is studied, as demonstrated by sound speed propagation
Gain of 20q11.21 in human pluripotent stem cells impairs TGF-ÎČ-dependent neuroectodermal commitment
Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-beta- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic
A Topos Foundation for Theories of Physics: I. Formal Languages for Physics
This paper is the first in a series whose goal is to develop a fundamentally
new way of constructing theories of physics. The motivation comes from a desire
to address certain deep issues that arise when contemplating quantum theories
of space and time. Our basic contention is that constructing a theory of
physics is equivalent to finding a representation in a topos of a certain
formal language that is attached to the system. Classical physics arises when
the topos is the category of sets. Other types of theory employ a different
topos. In this paper we discuss two different types of language that can be
attached to a system, S. The first is a propositional language, PL(S); the
second is a higher-order, typed language L(S). Both languages provide deductive
systems with an intuitionistic logic. The reason for introducing PL(S) is that,
as shown in paper II of the series, it is the easiest way of understanding, and
expanding on, the earlier work on topos theory and quantum physics. However,
the main thrust of our programme utilises the more powerful language L(S) and
its representation in an appropriate topos.Comment: 36 pages, no figure
Nonsingular potentials from excited state factorization of a quantum system with position dependent mass
The modified factorization technique of a quantum system characterized by
position-dependent mass Hamiltonian is presented. It has been shown that the
singular superpotential defined in terms of a mass function and a excited state
wave function of a given position-dependent mass Hamiltonian can be used to
construct non-singular isospectral Hamiltonians. The method has been
illustrated with the help of a few examples.Comment: Improved version accepted in J. Phys.
Boson-fermion mappings for odd systems from supercoherent states
We extend the formalism whereby boson mappings can be derived from
generalized coherent states to boson-fermion mappings for systems with an odd
number of fermions. This is accomplished by constructing supercoherent states
in terms of both complex and Grassmann variables. In addition to a known
mapping for the full so(2+1) algebra, we also uncover some other formal
mappings, together with mappings relevant to collective subspaces.Comment: 40 pages, REVTE
Physical and Biogeochemical Studies in the Subtropical and Tropical Atlantic
Maria S. Merian Cruise Report MSM18/L2
Cruise No. 18, Leg 2
May 11 â June 19, 2011
Mindelo (Cape Verde Islands) â Mindelo (Cape Verde Islands
Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation
Contains fulltext :
95878.pdf (publisher's version ) (Open Access)PURPOSE: The aim of this study was to evaluate subsidence tendency, surface congruency, chondrocyte survival and plug incorporation after osteochondral transplantation in an animal model. The potential benefit of precise seating of the transplanted osteochondral plug on the recipient subchondral host bone ('bottoming') on these parameters was assessed in particular. METHODS: In 18 goats, two osteochondral autografts were harvested from the trochlea of the ipsilateral knee joint and inserted press-fit in a standardized articular cartilage defect in the medial femoral condyle. In half of the goats, the transplanted plugs were matched exactly to the depth of the recipient hole (bottomed plugs; n = 9), whereas in the other half of the goats, a gap of 2 mm was left between the plugs and the recipient bottom (unbottomed plugs; n = 9). After 6 weeks, all transplants were evaluated on gross morphology, subsidence, histology, and chondrocyte vitality. RESULTS: The macroscopic morphology scored significantly higher for surface congruency in bottomed plugs as compared to unbottomed reconstructions (P = 0.04). However, no differences in histological subsidence scoring between bottomed and unbottomed plugs were found. The transplanted articular cartilage of both bottomed and unbottomed plugs was vital. Only at the edges some matrix destaining, chondrocyte death and cluster formation was observed. At the subchondral bone level, active remodeling occurred, whereas integration at the cartilaginous surface of the osteochondral plugs failed to occur. Subchondral cysts were found in both groups. CONCLUSIONS: In this animal model, subsidence tendency was significantly lower after 'bottomed' versus 'unbottomed' osteochondral transplants on gross appearance, whereas for histological scoring no significant differences were encountered. Since the clinical outcome may be negatively influenced by subsidence, the use of 'bottomed' grafts is recommended for osteochondral transplantation in patients
- âŠ