Abstract

We extend the formalism whereby boson mappings can be derived from generalized coherent states to boson-fermion mappings for systems with an odd number of fermions. This is accomplished by constructing supercoherent states in terms of both complex and Grassmann variables. In addition to a known mapping for the full so(2NN+1) algebra, we also uncover some other formal mappings, together with mappings relevant to collective subspaces.Comment: 40 pages, REVTE

    Similar works