24,745 research outputs found

    Modeling 3-D objects with planar surfaces for prediction of electromagnetic scattering

    Get PDF
    Electromagnetic scattering analysis of objects at resonance is difficult because low frequency techniques are slow and computer intensive, and high frequency techniques may not be reliable. A new technique for predicting the electromagnetic backscatter from electrically conducting objects at resonance is studied. This technique is based on modeling three dimensional objects as a combination of flat plates where some of the plates are blocking the scattering from others. A cube is analyzed as a simple example. The preliminary results compare well with the Geometrical Theory of Diffraction and with measured data

    Calculation of the static and dynamical correlation energy of pseudo-one-dimensional beryllium systems via a many-body expansion

    Get PDF
    Low-dimensional beryllium systems constitute interesting case studies for the test of correlation methods because of the importance of both static and dynamical correlation in the formation of the bond. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. However, in order to do so an insight into the wave function was necessary. Therefore we started by focusing on the description of small Be chains via standard quantum chemical methods and gave a brief analysis of the main characteristics of their wave functions. We then applied the MoI to larger beryllium systems, starting from the Be6 ring. First, the complete active space formalism (CAS-MoI) was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Despite this approach is well established for the calculation of systems with limited multireference character, its application to the description of whole dissociation curves still requires further testing. After discussing the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain

    Laboratory studies on a spherically curved Bragg spectrometer for cosmic X-ray spectroscopy

    Get PDF
    A spherical array of twenty LiF 200 crystals was built to test the performances of a freestanding, self-focussing spherical crystal cosmic X-ray spectrometer. Measurements presently available show that the size of the image for a point source at infinite distance would be 3 mm (FWHM) along the focalisation axis and 2.1 mm (FWHM) along the dispersion axis. The mosaic spread on individual crystals is less than 0.1 degree. A slightly systematic deviation from the ideal bending (0.1 degree) is observed at the edges of most crystals and this appears to be the major limitation to spectrometer performance

    Nonplanar integrability at two loops

    Full text link
    In this article we compute the action of the two loop dilatation operator on restricted Schur polynomials that belong to the su(2) sector, in the displaced corners approximation. In this non-planar large N limit, operators that diagonalize the one loop dilatation operator are not corrected at two loops. The resulting spectrum of anomalous dimensions is related to a set of decoupled harmonic oscillators, indicating integrability in this sector of the theory at two loops. The anomalous dimensions are a non-trivial function of the 't Hooft coupling, with a spectrum that is continuous and starting at zero at large N, but discrete at finite N.Comment: version to appear in JHE

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Parallel Self-Consistent-Field Calculations via Chebyshev-Filtered Subspace Acceleration

    Full text link
    Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-consistent density functional theory (DFT) calculations. In a previous paper, we have proposed a nonlinear Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first SCF iteration. The method may be viewed as an approach to solve the original nonlinear Kohn-Sham equation by a nonlinear subspace iteration technique, without emphasizing the intermediate linearized Kohn-Sham eigenvalue problem. It reaches self-consistency within a similar number of SCF iterations as eigensolver-based approaches. However, replacing the standard diagonalization at each SCF iteration by a Chebyshev subspace filtering step results in a significant speedup over methods based on standard diagonalization. Here, we discuss an approach for implementing this method in multi-processor, parallel environment. Numerical results are presented to show that the method enables to perform a class of highly challenging DFT calculations that were not feasible before

    Flora and Fauna in East Asian Art

    Full text link
    Flora and Fauna in East Asian Art is the fourth annual exhibition curated by students enrolled in the Art History Methods course. This exhibition highlights the academic achievements of six student curators: Samantha Frisoli ’18, Daniella Snyder ’18, Gabriella Bucci ’19, Melissa Casale ’19, Keira Koch ’19, and Paige Deschapelles ’20. The selection of artworks in this exhibition considers how East Asian artists portrayed similar subjects of flora and fauna in different media including painting, prints, embroidery, jade, and porcelain. This exhibition intends to reveal the hidden meanings behind various representations of flora and fauna in East Asian art by examining the iconography, cultural context, aesthetic and function of each object.https://cupola.gettysburg.edu/artcatalogs/1025/thumbnail.jp

    The chemical equilibration volume: measuring the degree of thermalization

    Full text link
    We address the issue of the degree of equilibrium achieved in a high energy heavy-ion collision. Specifically, we explore the consequences of incomplete strangeness chemical equilibrium. This is achieved over a volume V of the order of the strangeness correlation length and is assumed to be smaller than the freeze-out volume. Probability distributions of strange hadrons emanating from the system are computed for varying sizes of V and simple experimental observables based on these are proposed. Measurements of such observables may be used to estimate V and as a result the degree of strangeness chemical equilibration achieved. This sets a lower bound on the degree of kinetic equilibrium. We also point out that a determination of two-body correlations or second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex

    Slow synaptic transmission in frog sympathetic ganglia

    Get PDF
    Bullfrog ganglia contain two classes of neurone, B and C cells, which receive different inputs and exhibit different slow synaptic potentials. B cells, to which most effort has been directed, possess slow and late slow EPSPs. The sEPSP reflects a muscarinic action of acetylcholine released from boutons on B cells, whereas the late sEPSP is caused by a peptide (similar to teleost LHRH) released from boutons on C cells. During either sEPSP there is a selective reduction in two slow potassium conductances, designated 'M' and 'AHP'. The M conductance is voltage dependent and the AHP conductance is calcium dependent. Normally they act synergistically to prevent repetitive firing of action potentials during maintained stimuli. Computer stimulation of the interactions of these conductances with the other five voltage-dependent conductances present in the membrane allows a complete reconstruction of the effects of slow synaptic transmission on electrical behaviour
    • …
    corecore