-

-+
brought to you by .. CORE
provided by NASA Technical Reports Server

NASA Technical Memorandum 107598 f)' [

View metadata, citation and similar papers at core.ac.uk

Modeling 3-D Objects with Planar Surfaces
for Prediction of Electromagnetic Scattering

M. B. Koch, F. B. Beck, and C. R. Cockrell

April 1992

NNASA

National Aeronautics and
’ Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-TM-107598) MODELING 3-D OBJECTS WITH N92~-27189
PLANAR SURFACES FOR PREDICTION OF
ELECTROMAGNETIC SCATTERING (NASA) 13 p
uncl as
G3/32 0104024


https://core.ac.uk/display/42812181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




MODELING 3-D OBJECTS WITH PLANAR SURFACES FOR
PREDICTION OF ELECTROMAGNETIC SCATTERING

Abstract

Electromagnetic scattering analysis of objects at resonance is difficult because low
frequency techniques are slow and computer intensive and high frequency techniques may not be
reliable. In this paper, a new technique for predicting the electromagnetic backscatter from
electrically conducting objects at resonance is investigated. This technique is based on modeling
three-dimensional objects as a combination of flat plates where some of the plates are blocking
the scattering from others. A cube is analyzed as a simple cxample. The preliminary results

compare well with the Geometrical Theory of Diffraction and with measured data.



MODELING 3-D OBJECTS WITH PLANAR SURFACES FOR
PREDICTION OF ELECTROMAGNETIC SCATTERING

INTRODUCTION

Many techniques exist for the solution of electromagnetic scattering problems. Solution
techniques are determined by the electrical region into which the scattering object falls. These
regions are determined according to the size of the scattering object in relation to the wavelength
of the incident radiation. Three electrical regions exist: the low frequency region, the resonant
region, and the high frequency region. In the low frequency region the scattering object is smaller
than the incident wavelength. In the resonant region the incident wavelength is on the same order
of size as the scattering obstacle. Objects in the high frequency region are much larger than the
incident wavelength.

High and low frequency techniques make trade-offs between accuracy and speed of
calculation. Low frequency techniques, such as the Method of Moments (MoM) (ref.1,2) and the
Finite-Difference Time-Domain (FD-TD) (ref. 3), are sometimes referred to as “exact” solutions
since they solve Maxwell’s Equations numerically. The only approximation involved is in the
numerical implementation of the integral or differential equations. Low frequency techniques are
very accurate but are computer intensive in memory and CPU-time. In contrast, high frequency
techniques, such as Geometrical Optics (GO), Physical Optics (PO) and the Geometrical Theory
of Diffraction (GTD), make simplifying assumptions or approximations in the formulation of the
model (ref.2). These simplifying approximations are usually based on the largeness or smoothness
of the scattering object, hence high frequency techniques are unreliable if applied to an object in
the low frequency region. High frequency techniques are generally faster than low frequency
techniques.

Objects in the resonance region are difficult to analyze because low frequency techniques
are slow and computer intensive and high frequency techniques may not be reliable. The objective
of our research was to investigate a different technique for predicting the electromagnetic
backscatter from a perfectly electrically conducting object that would be more suitable for

scatterers in the resonance region. The new technique we have investigated is based on an



intuitive approach we call “blocking.” We have investigated scattering from an electrically
conducting cube as a simple example.

Consider a simple electrically conducting cube in an electromagnetic field with sides of
length “a” as shown in figure 1. The incident field is normal to one face and we are observing the
backscattered field normal to that face. We know that all faces of the cube are connected and that
all faces will affect the scattered field. The sides of the cube will not contribute to the scattered
field directly as the front and back faces will, but the sides do affect the scattered field since they
couple the front and back faces. If we were to solve this scattering problem via some low
frequency method such as the Method of Moments, we would have to include all six sides of the
cube in order to obtain an accurate solution. But if we could account for the coupling between the
front and back faces without having to perform calculations over the side, top, and bottom faces

we could significantly reduce the amount of computer calculation necessary to obtain a solution.
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Figure 1 Blocking Model

In other methods, such as the Method of Moments, the cube is analyzed as a single
scattering unit. The blocking technique analyzes the cube as a combination of flat plate units,
where some of the flat plates are blocking the scattering from other plates in their shadow. If the

incident field is normal to the front face then the sides do not contribute directly to the backscatter,



so they are not included in the blocking calculation for scattered fields, but are accounted for in

the calculation over only the front and back faces.

THE SOLUTION

The solution procedure is illustrated in figure 2 which shows the front and back plates in
an edge profile. The blocking model is solved as the superposilion of two problems--scattering
from the back plate and scattering from the front plate. First, we calculate the fields scattered from
the back plate over the plane of the front plate as if the front and sides were not there. Over the
area occupied by the front plate, the fields are blocked and set equal to zero, and the remaining
fields are transformed to the far field. Next, the far fields scattered from the front plate alone are

calculated. Finally, the two solutions are superimposed to obtain the total scattered field.
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Figure 2 Solution procedure
First, we determine the fields scattered from the back plate over the plane of the front

plate using the physical optics method with a modifying coefficient. We include this coefficient to



account for the fact that the back plate is not in direct illumination, but rather indirect illumination
from the diffracted fields off the front edges. To proceed, a planc wave with wavenumber k and
el time dependency, lying in the y-z plane with the magnetic field vector perpendicular to the x-
axis (TM*) is assumed incident at an angle theta on the back plate as though the sides and front
plate were not there. The electric and magnetic vector fields are represented as

—jk (ysin®, — zcos9.)
Oi‘ixe l l
and

E —-jk (ysinGi -~ zcosei)

0. . .
i = _T]— (aycosei+ﬁzsm9i)e

where 1 is the intrinsic impedance of free space, and are depicted in figure 3.

Figure 3 Calculating current on back plate

The physical optics approximation for the current induced on the back plate due to the

incident wave is



JS = ZHXHIZ‘:O,)’:)"
where the unprimed coordinates represent the observation point and the primed coordinates
represent points on the back plate. We have modified this approximation for the current on the

back plate, i 1. to be

> —1 ~ -
i = k—a(2an)|z=0,y=y,

£C, 2

where “a” is the length of the edge of the plate parallel to the x-axis. This evaluates to

. _1 E —jky‘sinei
J1 = E2Faxcoseie

and substituting 8 = 0 for our example of normal incidence gives

E
20.\

ka m x

s -l

J1

The coefficient, ;—; is the edge diffraction coefficient borrowed from Geometrical
Theory of Diffraction, which is basically a ray tracing technique with additional terms provided to
account for edge diffraction. The % edge condition originates on the front plate and gets
transferred to the back plate through the conducting sides. This coefficient numerically accounts
for the effect of the sides on the scattered field and reflects the fact that the back face is not in
direct illumination as the front face is (See Appendix).

Once the current on the back plate is determined, the scattered fields, Esl , are determined
by radiation integrals over the plane of the front plate located at z = a. The radiation integrals must
be valid in the near field since the front plate is in the near field of the back plate. Only the field
components tangential to the z = a plane are required in order to transform these fields to the far
field. Also, since J, =0, Ey is negligible compared to E,. The appropriate integral for E, over the

plane z = a becomes

= 2 .M . —ikR ;.4
Eg1 = Ex(x,y,2) = —Jm‘“.[Gle+ (x=x )2GZJX:|e J¥R ax'dy iy
S



where

R = J(x—x')2+(y—y')2+zé
~1-jkR+k*R?
G, = 3
R
3+ j3kR - k°R>
R
and
J = .—_12?.9
X ka n

In step 2 of figure 2, these fields are made zero over the area occupied by the front plate, as
if they are being blocked. In step 3, the remaining fields are transformed to the far field by the
method of stationary phase (ref. 4).

In step 4 of figure 2, calculating the fields scattered from the front plate is a
straightforward application of the physical optics approximation. The physical optics

approximation for the current induced on the front plate is determined to be

32 = 2ﬁXF‘I|Z:a,y=y'

where the unprimed coordinates represent the observation point and the primed coordinates
represent points on the front plate. The scattered fields are then found from radiation integrals
which can be valid in the far field only. In the final step, the far fields from the back plate are

superimposed on the far fields from the front plate to obtain the total scattered field.

RESULTS

The fields scattered from an object are often given as the radar cross section (RCS) which

is defined as
E |2
RCS = lim [41“2&}

I— oo 12 2
Figure 4 shows a plot of the radar cross section of a 2-inch cube both as a function of frequency

and as a function of size in wavelength. Over the frequency range from 6 to 18 GHZ, the cube



varies in size from 1 to 3 wavelengths which is in the resonant region. The graph compares the
blocking solution with the Geometrical Theory of Diffraction solution which is a high frequency
technique, and with measured results. The measured data was taken in NASA Langley’s
Experimental Test Range, a compact range facility. The RCS data was taken on a 2-inch cube test
model made from high density foam and covered with silver conducting paint. Ideally, we would
have liked to compare the blocking solution to a low frequency solution as well, such as the
Method of Moments. We were unable to solve the 2-inch cube problem at the higher frequencies
(16-18 GHz) using the Method of Moments code on the Cray-2S supercomputer due to the
enormous memory and processor time requirements. The blocking data agrees well with the GTD

solution, and the measured data falls around the two solutions.

CONCLUDING REMARKS

The preliminary results compare well to the Geometrical Theory of Diffraction. The fields
scattered from each plate were obtained using the physical optics approximation which does not
account for any edge effects, but when modified by the blocking coefficient, the blocking
technique predicts the edge effects on the scattering very well. In order to include other angles of
incidence and scattering besides normal to one face, other sides of the cube would have to be
brought into the blocking technique. For example, if the field were incident at 0=45 degrees and
$=0, then the top and bottom plates would have to be included in addition to front and back
plates. Over each face in direct illumination, blocking would have to be performed for each of the
other two faces in the shadow. While the blocking solution is faster than low frequency techniques
at normal incidence, at angles off normal, the calculations required for the blocking technique
mount so quickly that it is uncertain whether or not blocking would be significantly faster than a

low frequency technique.



eI1ep paImseaw pue (L1 ‘Surydoiq jo uosuredwo)) y amg1g

syibusjerep ‘e8zig
c I

08l

_ _
ZHo ‘Aousnbai4
091 o'vl 0¢cl 00t 0’8 09

0°02-
! | | | |

0'St-
aLy —-—
bunpolg ------
poinses
—0°0}-
E— Omn
3 ® < J
2153| ¥y Wi=SsoY

wsgp ‘SOY



Appendix
Source of Blocking Coefficient

In chapter 7 of Ruck (ref. 5), the first term of the backscatter cross section for a rectangular

plate is given as

2
in (kasin®
cos (kasin®) :ij%m—)—

al®o

RCS =

which can be rewritten as

sin (kasin9) , .1 . 2
Wi]—acos (kasme)'

2
_a 2
RCS = - (ka) g

The first term of this equation is recognized as the physical optics term, and the second term is an

edge diffraction term. When evaluated at 6 = 0, the equation reduces to

a2

RCS = —(ka)zili‘ilz
T Y Jia

where the edge diffraction coefficient is now k-l—a , the negative of which we assumed as our

blocking coefficient.
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