839 research outputs found

    Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix : determination of platinum group metals and gold in lead fire-assay buttons as a case study

    Get PDF
    Owing to the shorter time interval during which energy is delivered to the sample material, femtosecond (fs) laser ablation is preferable over nanosecond laser ablation for metallic samples. In this project, the influence of various laser parameters-beam diameter, repetition rate and laser fluence-on the ablation of Pb as a heavy metallic matrix using an infrared (lambda = 795 nm) fs-LA system (150 fs pulse duration) was studied. The merits of Ar and He as carrier gases were compared and as He did not provide a substantial improvement in the limits of detection, while deposition of sample material on the window of the ablation chamber was more pronounced, Ar was selected for all further measurements. The effect on the ICP caused by the introduction of various amounts of sample aerosol was studied by monitoring the signal intensity for Ar-38(+). It was shown that maximizing the amount of sample ablated and thus, the amount of sample aerosol introduced into the ICP, did not result in maximum sensitivity, which was rather obtained under 'compromise' conditions. Subsequently, femtosecond LA-quadrupole-based ICP-mass spectrometry (ICP-MS) was used for the determination of traces of the platinum group metals (PGMs) Rh, Pd, Ru, Ir and Pt and of Au in Pb buttons obtained by fire assay of platiniferous ore reference materials. The signal of Pb-204(+) was used as an internal reference, correcting for variations in the laser ablation and transport efficiencies and in the instrument's sensitivity. The spectral interferences established for some of the target nuclides due to the occurrence of Pb2+ ions were successfully overcome by pressurizing the reaction cell with NH3. Quantification versus a calibration curve constructed on the basis of the results obtained for matrix-matched standards (>99% Pb) provided excellent accuracy, superior to those obtained using nanosecond LA-ICP-MS. Also the limits of detection were improved by a factor ranging between 3 and 10 and are <0.010 mu g g(-1) for the most important PGMs (Rh, Pd, Pt) and Au. Several measures, such as the use of a large ablation cell and housing up to 10 Pb buttons, were taken to increase the sample throughput. In the same context, day-to-day reproducibility of the calibration curve was also examined. When recording a 'fresh' calibration curve every day, the average bias between the experimental results and the corresponding reference values was established to be <2.5% for every target element. When using one calibration curve during three consecutive days, the bias still remains <10%, while the sample throughput is increased and analysis of several tens of buttons per day is feasible (10-15 min total analysis time per sample)

    08422 Abstracts Collection -- Computer Vision in Camera Networks for Analyzing Complex Dynamic Natural Scenes

    Get PDF
    From 12.10. to 15.10.2008, the Dagstuhl Event 08422 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Universal Image Statistics as a Basis for Esthetic Perception

    Get PDF
    In the last decades many neuroscientists have started to investigate the perception of nature and art by the human visual system. Natural scenes lead to an esthetically pleasing perception, therefore scientists have begun to research the reasons to understand the processing principles of the human visual system

    Prefrontal control over motor cortex cycles at beta-frequency during movement inhibition

    Get PDF
    A fully adapted behavior requires maximum efficiency to inhibit processes in the motor domain [ 1 ]. Although a number of cortical and subcortical brain regions have been implicated, converging evidence suggests that activation of right inferior frontal gyrus (r-IFG) and right presupplementary motor area (r-preSMA) is crucial for successful response inhibition [ 2, 3 ]. However, it is still unknown how these prefrontal areas convey the necessary signal to the primary motor cortex (M1), the cortical site where the final motor plan eventually has to be inhibited or executed. On the basis of the widely accepted view that brain oscillations are fundamental for communication between neuronal network elements [ 4–6 ], one would predict that the transmission of these inhibitory signals within the prefrontal-central networks (i.e., r-IFG/M1 and/or r-preSMA/M1) is realized in rapid, periodic bursts coinciding with oscillatory brain activity at a distinct frequency. However, the dynamics of corticocortical effective connectivity has never been directly tested on such timescales. By using double-coil transcranial magnetic stimulation (TMS) and electroencephalography (EEG) [ 7, 8 ], we assessed instantaneous prefrontal-to-motor cortex connectivity in a Go/NoGo paradigm as a function of delay from (Go/NoGo) cue onset. In NoGo trials only, the effects of a conditioning prefrontal TMS pulse on motor cortex excitability cycled at beta frequency, coinciding with a frontocentral beta signature in EEG. This establishes, for the first time, a tight link between effective cortical connectivity and related cortical oscillatory activity, leading to the conclusion that endogenous (top-down) inhibitory motor signals are transmitted in beta bursts in large-scale cortical networks for inhibitory motor control

    Listening with Curiosity – Tracking the Acoustic Response of Portable Laser Ablation

    Get PDF
    Nowadays, one of the methods of choice for minimal invasive sampling of solid matter is laser ablation (LA). Routine LA sampling is performed commonly in the laboratory and the amount of ablated mass can directly be monitored and analysed. By contrast laser-based sampling in the field, using a portable laser ablation system (pLA), still remains challenging concerning low-absorbing or NIR-transparent samples. The current hardware is limited in regards to photon energy and density resulting in unsteady ablation. But as the actual amount of collected mass is the major crux of on-site sampling, with this performance it is often unknown and estimates can only be made based on the experience from prior method development and the experience of the user. In the following work an easy-to-use method to monitor the amount of ablated material collected during laser-based sampling by measuring the acoustic response is presented. The pLA-system was coupled to inductively coupled plasma mass spectrometry (ICPMS) via a diffusion driven gas exchange device (GED) which allowed to monitor mass removal and acoustic response quasi-simultaneously. For the current instrumentation only actual mass removal leads to the formation of shockwaves (SW) and, thus, acoustic signals. These events can be used as indicator for executed LA events and counted on an individual basis. The intensity of acoustic signals has been shown to correlate with the LA mass, i.e., the amount of ablated material. This allows to perform re-adjustment of the laser focus during sampling for optimal ablation based on the intensity of the acoustic signal. Likewise, acoustic intensity together with counting allows the operator to make estimates about total mass sampled. Therefore, unsuccessful laser aerosol collection in the field shall become a thing of the past

    Erzeugung und Nutzung von Bibliotheken von Zwei-Gruppen-Diffusionsparametern zur Berechnung eines KWU-Konvoi-Reaktors mit dem Reaktordynamik-Programm DYN3D

    Get PDF
    Libraries of two-group neutron-diffusion parameters for a Siemens-KWU-Konvoi Pressurized Water Reactor have been generated at Forschungszentrum Rossendorf and TĂśV Bau und Betrieb GmbH by using the codes HELIOS and CASMO, respectively. The libraries have been coupled to the reactor-dynamics code DYN3D. For a generic PWR core containing MOX fuel elements, DYN3D macro-burnup calculations and the calculation of different operation states have been carried out. The results will be used for the investigation of possible accident scenarios. Reactivity coefficients calculated by DYN3D are needed for accident analyses by the 1-D thermal-hydraulic code ATHLET. Using the cross section data, more detailed analyses can be carried out by applying the coupled-code system DYN3D-ATHLET, considering 3D neutron kinetics. The comparison of the results calculated by DYN3D with two different diffusion-parameter libraries can give an idea of how uncertainties in diffusion data influence the accuracy of reactor simulation

    Mass spectrometric and quantum mechanical analysis of gas-phase formation, structure, and decomposition of various b2 ions and their specifically deuterated analogs

    Get PDF
    AbstractB ions represent an important type of fragment ions derived from protonated peptides by cleavage of an amide bond with N-terminal charge retention. Such species have also been discussed as key intermediates during cyclic peptide fragmentation. Detailed structural information on such ion types can facilitate the interpretation of multiple step fragmentations such as the formation of inner chain fragments from linear peptides or the fragmentation of cyclic peptides. The structure of different b2 ion isomers was investigated with collision-induced dissociations (CID) in combination with hydrogen/deuterium (H/D) exchange of the acidic protons. Special care was taken to investigate fragment ions derived from pure gas-phase processes. Structures deduced from the results of the CID analysis were compared with structures predicted on the basis of quantum chemical density functional theory (DFT) calculations to be most stable. The results pointed to different types of structures for b2 ion isomers of complementary amino acid sequences. Either the protonated oxazolone structure or the N-terminally protonated immonium ion structure were proposed on the basis of the CID results and the DFT calculations. In addition, the analysis of different selectively N-alkylated peptide analogs revealed mechanistic details of the processes generating b ions
    • …
    corecore