55 research outputs found

    Asymmetry in Charmed Particles Production in Σ\Sigma^{-} beam

    Full text link
    We present the calculation of the inclusive xFx_F-distributions of charmed hadrons, produced in high-energy Σ\Sigma^--beam. The calculation is based on the modified mechanism of charmed quarks fragmentation as well as on the mechanism of cc-quark recombination with the valence quarks from initial hadrons. We predict the additional asymmetry in the production of charmed hadrons due to the different distributions of the valence s and d quarks in Σ\Sigma^--beam.Comment: 19 pages, Latex, 6 figure

    Selective Interaction of Syntaxin 1A with KCNQ2: Possible Implications for Specific Modulation of Presynaptic Activity

    Get PDF
    KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation

    Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies

    Get PDF
    T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms

    Airway smooth muscle as a target of asthma therapy: history and new directions

    Get PDF
    Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca(2+ )channel blockers, K(+ )channel openers) have been tried and found to be ineffective. Functional antagonists, which modulate intracellular signalling pathways within the smooth muscle (β-agonists and phosphodiesterase inhibitors), have been used for decades with success, but are not universally effective and patients continue to suffer with exacerbations of asthma using these drugs. During the past several decades, research energies have been directed into developing therapies to treat airway inflammation, but there have been no substantial advances in asthma therapies targeting the ASM. In this manuscript, excitation-contraction coupling in ASM is addressed, highlighting the current treatment of asthma while proposing several new directions that may prove helpful in the management of this disease

    Timing and severity of inhibitor development in recombinant versus plasma-derived factor VIII concentrates: a SIPPET analysis

    Get PDF
    Essentials Recombinant factor VIII (rFVIII) was contrasted with plasma-derived FVIII (pdFVIII). In previously untreated patients with hemophilia A, rFVIII led to more inhibitors than pdFVIII. Inhibitors with rFVIII developed earlier, and the peak rate was higher than with pdFVIII. Inhibitors with rFVIII were more severe (higher titre) than with pdFVIII. Summary: Background The development of neutralizing antibodies (inhibitors) against factor VIII (FVIII) is the most severe complication in the early phases of treatment of severe hemophilia A. Recently, a randomized trial, the Survey of Inhibitors in Plasma-Product Exposed Toddlers (SIPPET) demonstrated a 2-fold higher risk of inhibitor development in children treated with recombinant FVIII (rFVIII) products than with plasma-derived FVIII (pdFVIII) during the first 50 exposure days (EDs). Objective/Methods In this post-hoc SIPPET analysis we evaluated the rate of inhibitor incidence over time by every 5 EDs (from 0 to 50 EDs) in patients treated with different classes of FVIII product, made possible by a frequent testing regime. Results The highest rate of inhibitor development occurred in the first 10 EDs, with a large contrast between rFVIII and pdFVIII during the first 5 EDs: hazard ratio 3.14 (95% confidence interval [CI], 1.01\ue2\u80\u939.74) for all inhibitors and 4.19 (95% CI, 1.18\ue2\u80\u9314.8) for high-titer inhibitors. For patients treated with pdFVIII, the peak of inhibitor development occurred later (6\ue2\u80\u9310 EDs) and lasted for a shorter time. Conclusion These results emphasize the high immunologic vulnerability of patients during the earliest exposure to FVIII concentrates, with the strongest response to recombinant FVIII products

    FLASH PHOTOLYSIS ABSORPTION SPECTROSCOPY OF THE RARE GAS HALIDES

    No full text
    Author Institution: Department of Chemistry, Drexel UniversityKinetic spectroscopy of a flash-photolyzed mixture of Xe and UF6UF_{6} yielded the B-X transition (300--355 nm) of XeF in absorption. Vibrational assignments were made for 22 bands (0vprime 12,0v4)(0 \leq v^{p}rime\ \leq 12, 0 \leq v^{\prime\prime} \leq 4), and confirmed by computer modeling of the relative absorption intensities. Constants for XeF(B-X) are: Te=28813.9±0.5cm1ωe=308.23±0.5cm1xeωe=1.4266±0.03cm1ωe=225.06±1.4cm1xeωe=10.568±0.4cm1,andΔRe=ReRe=0.35±0.02 A˚T_{e} = 28 813.9 \pm 0.5 cm^{-1} \omega_{e}^{\prime} = 308.23 \pm 0.5 cm^{-1} x_{e}\omega_{e} = 1.4266 \pm 0.03 cm^{-1} \omega_{e}^{\prime} = 225.06 \pm 1.4 cm^{-1} x_{e}\omega_{e}^{\prime} = 10.568 \pm 0.4 cm^{-1}, and \Delta R_{e} = R_{e}^{\prime} - R_{e}^{\prime} = 0.35 \pm 0.02 \ {\AA}. Studies of other rare gas halides by both flash photolysis and by tunable laser fluorescence spectroscopy will be discussed
    corecore