174 research outputs found

    Safety and efficacy of mass drug administration with a single-dose triple-drug regimen of albendazole + diethylcarbamazine + ivermectin for lymphatic filariasis in Papua New Guinea: An open-label, cluster-randomised trial

    Get PDF
    BACKGROUND: Papua New Guinea (PNG) has a high burden of lymphatic filariasis (LF) caused by Wuchereria bancrofti, with an estimated 4.2 million people at risk of infection. A single co-administered dose of ivermectin, diethylcarbamazine and albendazole (IDA) has been shown to have superior efficacy in sustained clearance of microfilariae compared to diethylcarbamazine and albendazole (DA) in small clinical trials. A community-based cluster-randomised trial of DA versus IDA was conducted to compare the safety and efficacy of IDA and DA for LF in a moderately endemic, treatment-naive area in PNG. METHODOLOGY: All consenting, eligible residents of 24 villages in Bogia district, Madang Province, PNG were enrolled, screened for W. bancrofti antigenemia and microfilaria (Mf) and randomised to receive IDA (N = 2382) or DA (N = 2181) according to their village of residence. Adverse events (AE) were assessed by active follow-up for 2 days and passive follow-up for an additional 5 days. Antigen-positive participants were re-tested one year after MDA to assess treatment efficacy. PRINCIPAL FINDINGS: Of the 4,563 participants enrolled, 96% were assessed for AEs within 2 days after treatment. The overall frequency of AEs were similar after either DA (18%) or IDA (20%) treatment. For those individuals with AEs, 87% were mild (Grade 1), 13% were moderate (Grade 2) and there were no Grade 3, Grade 4, or serious AEs (SAEs). The frequency of AEs was greater in Mf-positive than Mf-negative individuals receiving IDA (39% vs 20% p\u3c0.001) and in Mf-positive participants treated with IDA (39%), compared to those treated with DA (24%, p = 0.023). One year after treatment, 64% (645/1013) of participants who were antigen-positive at baseline were re-screened and 74% of these participants (475/645) remained antigen positive. Clearance of Mf was achieved in 96% (52/54) of infected individuals in the IDA arm versus 84% (56/67) of infected individuals in the DA arm (relative risk (RR) 1.15; 95% CI, 1.02 to 1.30; p = 0.019). Participants receiving DA treatment had a 4-fold higher likelihood of failing to clear Mf (RR 4.67 (95% CI: 1.05 to 20.67; p = 0.043). In the DA arm, a significant predictor of failure to clear was baseline Mf density (RR 1.54; 95% CI, 1.09 to 2.88; p = 0.007). CONCLUSION: IDA was well tolerated and more effective than DA for clearing Mf. Widespread use of this regimen could accelerate LF elimination in PNG. TRIAL REGISTRATION: Registration number NCT02899936; https://clinicaltrials.gov/ct2/show/NCT02899936

    A Highly Potent and Broadly Neutralizing H1 Influenza-Specific Human Monoclonal Antibody

    Get PDF
    Influenza's propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.Peer reviewe

    9G4 Autoreactivity Is Increased in HIV-Infected Patients and Correlates with HIV Broadly Neutralizing Serum Activity

    Get PDF
    The induction of a broadly neutralizing antibody (BNAb) response against HIV-1 would be a desirable feature of a protective vaccine. Vaccine strategies thus far have failed to elicit broadly neutralizing antibody responses; however a minority of HIV-infected patients do develop circulating BNAbs, from which several potent broadly neutralizing monoclonal antibodies (mAbs) have been isolated. The findings that several BNmAbs exhibit autoreactivity and that autoreactive serum antibodies are observed in some HIV patients have advanced the possibility that enforcement of self-tolerance may contribute to the rarity of BNAbs. To examine the possible breakdown of tolerance in HIV patients, we utilized the 9G4 anti-idiotype antibody system, enabling resolution of both autoreactive VH4-34 gene-expressing B cells and serum antibodies. Compared with healthy controls, HIV patients had significantly elevated 9G4+ serum IgG antibody concentrations and frequencies of 9G4+ B cells, a finding characteristic of systemic lupus erythematosus (SLE) patients, both of which positively correlated with HIV viral load. Compared to the global 9G4−IgD− memory B cell population, the 9G4+IgD− memory fraction in HIV patients was dominated by isotype switched IgG+ B cells, but had a more prominent bias toward “IgM only" memory. HIV envelope reactivity was observed both in the 9G4+ serum antibody and 9G4+ B cell population. 9G4+ IgG serum antibody levels positively correlated (r = 0.403, p = 0.0019) with the serum HIV BNAbs. Interestingly, other serum autoantibodies commonly found in SLE (anti-dsDNA, ANA, anti-CL) did not correlate with serum HIV BNAbs. 9G4-associated autoreactivity is preferentially expanded in chronic HIV infection as compared to other SLE autoreactivities. Therefore, the 9G4 system provides an effective tool to examine autoreactivity in HIV patients. Our results suggest that the development of HIV BNAbs is not merely a consequence of a general breakdown in tolerance, but rather a more intricate expansion of selective autoreactive B cells and antibodies

    Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    Safety and efficacy of mass drug administration with a single-dose triple-drug regimen of albendazole + diethylcarbamazine + ivermectin for lymphatic filariasis in Papua New Guinea: An open-label, cluster-randomised trial

    Get PDF
    Background Papua New Guinea (PNG) has a high burden of lymphatic filariasis (LF) caused by Wucher-eria bancrofti, with an estimated 4.2 million people at risk of infection. A single co-adminis-tered dose of ivermectin, diethylcarbamazine and albendazole (IDA) has been shown to have superior efficacy in sustained clearance of microfilariae compared to diethylcarbama-zine and albendazole (DA) in small clinical trials. A community-based cluster-randomised trial of DA versus IDA was conducted to compare the safety and efficacy of IDA and DA for LF in a moderately endemic, treatment-naive area in PNG. Methodology All consenting, eligible residents of 24 villages in Bogia district, Madang Province, PNG were enrolled, screened for W. bancrofti antigenemia and microfilaria (Mf) and randomised to receive IDA (N = 2382) or DA (N = 2181) according to their village of residence. Adverse events (AE) were assessed by active follow-up for 2 days and passive follow-up for an addi-tional 5 days. Antigen-positive participants were re-tested one year after MDA to assess treatment efficacy. Principal findings Of the 4,563 participants enrolled, 96% were assessed for AEs within 2 days after treat-ment. The overall frequency of AEs were similar after either DA (18%) or IDA (20%) treat-ment. For those individuals with AEs, 87% were mild (Grade 1), 13% were moderate (Grade 2) and there were no Grade 3, Grade 4, or serious AEs (SAEs). The frequency of AEs was greater in Mf-positive than Mf-negative individuals receiving IDA (39% vs 20% p<0.001) and in Mf-positive participants treated with IDA (39%), compared to those treated with DA (24%, p = 0.023). One year after treatment, 64% (645/1013) of participants who were antigen-positive at baseline were re-screened and 74% of these participants (475/ 645) remained antigen positive. Clearance of Mf was achieved in 96% (52/54) of infected individuals in the IDA arm versus 84% (56/67) of infected individuals in the DA arm (rela-tive risk (RR) 1.15; 95% CI, 1.02 to 1.30; p = 0.019). Participants receiving DA treatment had a 4-fold higher likelihood of failing to clear Mf (RR 4.67 (95% CI: 1.05 to 20.67; p = 0.043). In the DA arm, a significant predictor of failure to clear was baseline Mf density (RR 1.54; 95% CI, 1.09 to 2.88; p = 0.007). Conclusion IDA was well tolerated and more effective than DA for clearing Mf. Widespread use of this regimen could accelerate LF elimination in PNG

    457 KEYNOTE-495/KeyImPaCT: interim analysis of a randomized, biomarker-directed, phase 2 trial of pembrolizumab-based combination therapy for non–small cell lung cancer (NSCLC)

    Get PDF
    BackgroundT-cell–inflamed gene expression profile (TcellinfGEP) and tumor mutational burden (TMB) are clinically validated biomarkers that independently predict pembrolizumab response. This study investigated prospective TcellinfGEP and TMB assessment in evaluating first-line pembrolizumab-based combination therapies; the different treatment combinations evaluated may provide insight into the unique biology of each biomarker subgroup.MethodsKEYNOTE-495/KeyImPaCT is a group-sequential, adaptively randomized, multisite, open-label, phase 2 study investigating first-line pembrolizumab plus the VEGF/FGFR inhibitor lenvatinib, CTLA-4 inhibitor quavonlimab (MK-1308), or LAG-3 inhibitor favezelimab (MK-4280) in patients with advanced NSCLC. DNA and RNA were extracted from tumor tissue to determine TcellinfGEP and TMB; patients were assigned to one of four biomarker-defined subgroups (TcellinfGEPlowTMBlow, TcellinfGEPlowTMBhigh, TcellinfGEPhighTMBlow, TcellinfGEPhighTMBhigh) and randomly assigned 1:1:1 to receive pembrolizumab (200mg IV Q3W)+lenvatinib (20mg oral QD), pembrolizumab+quavonlimab (75mg IV Q6W), or pembrolizumab+favezelimab (200mg [n=30] or 800mg [n=34] Q3W; the initial prespecified dose was 200mg but changed to 800mg based on emerging data). The primary end point was investigator-assessed ORR per RECIST v1.1. Multiple interim analyses will be performed until the prespecified clinical signal is observed. The first interim analysis for each combination therapy occurred after ≥10 patients had ≥12 weeks of follow-up.ResultsAt the data cutoff (January 11, 2021), 208 patients were treated (pembrolizumab+lenvatinib, n=72; pembrolizumab+quavonlimab, n=72; pembrolizumab+favezelimab 200mg, n=30; pembrolizumab+favezelimab 800mg, n=34). The overall assay success rate for testing and determining TcellinfGEP and TMB was 94%. In patients treated with pembrolizumab+lenvatinib, pembrolizumab+quavonlimab, or pembrolizumab+favezelimab, ORRs were generally highest in the TcellinfGEPhighTMBhigh subgroup (table 1); response rates were similar across combinations within this subgroup. ORR was low across combinations within the TcellinfGEPlowTMBlow subgroup. Treatment-related adverse events (TRAEs) occurred in 88%, 65%, 57%, and 59% of patients in the pembrolizumab+lenvatinib, pembrolizumab+quavonlimab, pembrolizumab+favezelimab 200mg and pembrolizumab+favezelimab 800mg arms, respectively. Consistent with the known TRAEs of these agents, most TRAEs were grade 1 or 2 in severity except in the pembrolizumab+lenvatinib arm (grade 3–5, 63%). Three deaths from TRAEs occurred (pembrolizumab+lenvatinib [n=2], brain hemorrhage and myocardial infarction; pembrolizumab+favezelimab 800 mg [n=1], pneumonitis).Abstract 457 Table 1Confirmed ORR by Therapy and Biomarker StatusConclusionsThese data demonstrate the feasibility and clinical usefulness of prospective TcellinfGEP and TMB assessment to study the clinical activity of three first-line pembrolizumab-based combination therapies in patients with advanced NSCLC. Although sample sizes were small, the TcellinfGEPhighTMBhigh subgroup demonstrated the best response among the biomarker subgroups for all three combination therapies; further validation is needed to determine additional signals and may be addressed as more mature data become available.AcknowledgementsJeanne Fahey, PhD, of Merck & Co., Inc., Kenilworth, New Jersey, USA, provided critical review of the abstract. Elisha Dettman PhD, Mark Ayers MS, and Andrey Loboda PhD of Merck & Co., Inc., Kenilworth, New Jersey, USA, provided critical review of study translational data. Medical writing and/or editorial assistance was provided by Shane Walton, PhD, and Lei Bai, PhD, of ApotheCom (Yardley, PA, USA). This assistance was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.Trial RegistrationClinicalTrials.gov, NCT03516981Ethics ApprovalThe study protocol and all amendments were approved by the relevant institutional review board or ethics committee at each study site. All patients provided written informed consent to participate in the clinical trial

    A novel tetra-primer ARMS-PCR approach for the molecular karyotyping of chromosomal inversion 2Ru in the main malaria vectors Anopheles gambiae and Anopheles coluzzii

    Get PDF
    Background: Chromosomal inversion polymorphisms have been associated with adaptive behavioral, physiological, morphological and life history traits in the two main Afrotropical malaria vectors, Anopheles coluzzii and Anopheles gambiae. The understanding of the adaptive value of chromosomal inversion systems is constrained by the feasibility of cytological karyotyping. In recent years in silico and molecular approaches have been developed for the genotyping of most widespread inversions (2La, 2Rb and 2Rc). The 2Ru inversion, spanning roughly 8% of chromosome 2R, is commonly polymorphic in West African populations of An. coluzzii and An. gambiae and shows clear increases in frequency with increasing rainfall seasonally and geographically. The aim of this work was to overcome the constraints of currently available cytological and high-throughput molecular assays by developing a simple PCR assay for genotyping the 2Ru inversion in individual specimens of both mosquito species. Methods: We designed tetra-primer amplification refractory mutation system (ARMS)-PCR assays based on five tag single-nucleotide polymorphisms (SNPs) previously shown to be strongly correlated with 2Ru inversion orientation. The most promising assay was validated against laboratory and field samples of An. coluzzii and An. gambiae karyotyped either cytogenetically or molecularly using a genotyping-in-thousands by sequencing (GT-seq) high-throughput approach that employs targeted sequencing of multiplexed PCR amplicons. Results: A successful assay was designed based on the tag SNP at position 2R, 31710303, which is highly predictive of the 2Ru genotype. The assay, which requires only one PCR, and no additional post-PCR processing other than electrophoresis, produced a clear banding pattern for 98.5% of the 454 specimens tested, which is a 96.7% agreement with established karyotyping methods. Sequences were obtained for nine of the An. coluzzii specimens manifesting 2Ru genotype discrepancies with GT-seq. Possible sources of these discordances are discussed. Conclusions: The tetra-primer ARMS-PCR assay represents an accurate, streamlined and cost-effective method for the molecular karyotyping of the 2Ru inversion in An. coluzzii and An. gambiae. Together with approaches already available for the other common polymorphic inversions, 2La, 2Rb and 2Rc, this assay will allow investigations of the adaptive value of the complex set of inversion systems observed in the two major malaria vectors in the Afrotropical region. Graphical Abstract

    CD39 and control of cellular immune responses

    Get PDF
    CD39 is the cell surface-located prototypic member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. Biological actions of CD39 are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides. This ecto-enzymatic cascade in tandem with CD73 (ecto-5–nucleotidase) also generates adenosine and has major effects on both P2 and adenosine receptor signalling. Despite the early recognition of CD39 as a B lymphocyte activation marker, little is known of the role of CD39 in humoral or cellular immune responses. There is preliminary evidence to suggest that CD39 may impact upon antibody affinity maturation. Pericellular nucleotide/nucleoside fluxes caused by dendritic cell expressed CD39 are also involved in the recruitment, activation and polarization of naïve T cells. We have recently explored the patterns of CD39 expression and the functional role of this ecto-nucleotidase within quiescent and activated T cell subsets. Our data indicate that CD39, together with CD73, efficiently distinguishes T regulatory cells (Treg) from other resting or activated T cells in mice (and humans). Furthermore, CD39 serves as an integral component of the suppressive machinery of Treg, acting, at least in part, through the modulation of pericellular levels of adenosine. We have also shown that the coordinated regulation of CD39/CD73 expression and of the adenosine receptor A2A activates an immunoinhibitory loop that differentially regulates Th1 and Th2 responses. The in vivo relevance of this network is manifest in the phenotype of Cd39-null mice that spontaneously develop features of autoimmune diseases associated with Th1 immune deviation. These data indicate the potential of CD39 and modulated purinergic signalling in the co-ordination of immunoregulatory functions of dendritic and Treg cells. Our findings also suggest novel therapeutic strategies for immune-mediated diseases
    • …
    corecore