430 research outputs found

    Multiplicity of Plasmodium falciparum infection following intermittent preventive treatment in infants

    Get PDF
    ABSTRACT: BACKGROUND: Intermittent preventive treatment in infants with sulphadoxine-pyrimethamine (IPTi-SP) reduces malaria morbidity by 20% to 33%. Potentially, however, this intervention may compromise the acquisition of immunity, including the tolerance towards multiple infections with Plasmodium falciparum. METHODS: Plasmodium falciparum isolates were obtained from children participating in two Ghanaian IPTi-SP trials (Tamale, Afigya Sekyere) at 15 months of age, i.e., six months after they had received the second dose of IPTi-SP or placebo. By typing the polymorphic merozoite surface protein 1 (msp1) and msp2 genes, multiplicity of infection (MOI) was assessed in 389 isolates. A total of additional 133 samples were collected in Tamale at 3, 6, 9, and 12 months of age. Comparisons of MOI between groups were done by non-parametric statistical tests. RESULTS: The number of distinguishable P. falciparum clones (MOI) ranged between one and six. Mean MOI in Tamale was stable at 2.13 - 2.17 during the first year of life, and increased to 2.57 at age 15 months (P = 0.01). At no age did MOI differ between the IPTi-SP and placebo groups (each, P [greater than or equal to] 0.5). At 15 months of age, i.e., six months after the second dose, MOI was very similar for children who had received IPTi or placebo (means, 2.25 vs. 2.33; P = 0.55) as was the proportion of polyclonal infections (69.6% vs. 69.7%; P = 0.99). Adjusting for study site, current and prior malaria, parasite density, and season did not change this finding. CONCLUSIONS: IPTi-SP appears to have no impact on the multiplicity of infection during infancy and thereafter. This suggests that tolerance of multiple infections, a component of protective immunity in highly endemic areas, is not affected by this interventio

    S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts

    Get PDF
    Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed

    Structuring Collaboration Scripts: Optimizing online group work on classroom dilemmas in teacher education

    Get PDF
    The optimal structure in collaboration scripts for serious games has appeared to be a key success factor. In this study we compare a ‘high- structured’ and ‘low-structured’ version of a mastership game where teachers-in-training discuss solutions on classroom dilemmas. We collected data on the differences in learning effects and student appreciation. The most interesting result shows that reports delivered by students that played the low-structured version received significantly higher teacher grades when compared to the high-structured version

    Therapeutic and prophylactic effect of intermittent preventive anti-malarial treatment in infants (IPTi) from Ghana and Gabon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intermittent preventive treatment in infants (IPTi) with sulphadoxine-pyrimethamine (SP) reduces the incidence of malaria episodes in young children. The exact mechanism by which the protective effect is mediated needs to be defined. This study aimed to investigate therapeutic, prophylactic, and possible exceeding effects of SP-based IPTi in two clinical trials.</p> <p>Methods</p> <p>Protective efficacies from two IPTi trials performed in Kumasi, Ghana, and Lambaréné, Gabon, were assessed for overlapping time series of 61 days. For six-months periods after each of three IPTi doses a multivariate Poisson regression model with the respective cohort as co-variate was generated and effect modification of protective efficacy with time strata was evaluated by log-likelihood tests.</p> <p>Results</p> <p>Protective efficacies were not significantly different between the two study cohorts. Study-cohort corrected protective efficacy was highest for the first 61 days after each IPTi application and decreased continuously. For the first 61 days after IPTi-1, IPTi-2, and IPTi-3 the protective efficacy was 71%, 44%, and 43%, respectively. A reduction of the malaria incidence rate was detectable for the first 60, 30 and 40 days after IPTi-1, IPTi-2 and IPTi-3 drug application, respectively. After IPTi-3 a higher risk for malaria could be seen after day 60. This effect was mainly based on the overwhelming influence of the Kumasi cohort.</p> <p>Conclusion</p> <p>The results suggest that SP-based IPTi mainly works through a therapeutic and prophylactic effect over 30 to 60 days after drug application and that a sustained effect beyond post-treatment prophylaxis might be very low.</p> <p>Trial registration</p> <p>Data analysis from clinical trials NCT ID # 00206739 (Kumasi Trial) and NCT ID # 00167843 (Lambaréné Trial), <url>http://www.clinicaltrials.gov</url>.</p

    Specifying computer-supported collaboration scripts

    Get PDF
    Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)

    AMACO is a component of the basement membrane-associated fraser complex

    Get PDF
    Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex

    System Orchestration Support for a Collaborative Blended Learning Flow

    Get PDF
    Portable and interactive technologies are changing the nature of collaborative learning practices and open up new possibilities for Computer Supported Collaborative Learning (CSCL). Now, activities occurring in and beyond the classroom can be combined and integrated leading to a new type of complex collaborative blended learning scenarios. However, to organize and structure these scenarios is challenging and represent a workload for practitioners, which hinder the adoption of these technology-enhanced practices. As an approach to alleviate this workload, this paper proposes a proof of concept of a technological solution to overcome the limitations detected in an analysis of an actual collaborative blended learning experiment carried out in a previous study. The solution consists on a Unit of Learning suitable to be instantiated with IMS Learning Design and complemented by a GenericService Integration system. This chapter also discusses to which extent the proposed solution covers the limitations detected in the previous study and how useful could be for reducing the orchestration effort in future experiences.This work has been partially funded by the Project Learn3 (TIN2008- 05163/TSI) from the Plan Nacional I+D+I and "Investigación y Desarrollo de Tecnologías para el e-Learning en la Comunidad de Madrid” funded by the Madrid Regional Government under grant No. S2009/TIC-1650
    corecore