16 research outputs found

    Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage

    Get PDF
    Phthalocyanines (Pc) are dyes in widespread use in materials science and nanotechnology, with numerous applications in medicine, photonics, electronics and energy conversion. With the aim to construct biohybrid materials, we here prepared and analyzed the structure of two Pc- loaded virus- like particles (VLP) with diameters of 20 and 28 nm (i.e., T = 1 and T= 3 icosahedral symmetries, respectively). Our cryoelectron microscopy (cryo- EM) studies show an unprecedented, very high level of Pc molecule organization within both VLP. We found thaT = 10 nm diameter nanospheres form inside the T = 1 VLP by self- assembly of supramolecular Pc stacks. Monodisperse, self- assembled organic dye nanospheres were not previously known, and are a consequence of capsid- imposed symmetry and size constraints. The Pc cargo also produces major changes in the protein cage structure and in the mechanical properties of the VLP. Pc- loaded VLP are potential photosensitizer/ carrier systems in photodynamic therapy (PDT), for which their mechanical behaviour must be characterized. Many optoelectronic applications of Pc dyes, on the other hand, are dependent on dye organization at the nanoscale level. Our multidisciplinary study thus opens the way towards nanomedical and nanotechnological uses of these functional molecules

    Self-Sorting of Foreign Proteins in a Bacterial Nanocompartment

    No full text
    Nature uses bottom-up approaches for the controlled assembly of highly ordered hierarchical structures with defined functionality, such as organelles, molecular motors, and transmembrane pumps. The field of bionanotechnology draws inspiration from nature by utilizing biomolecular building blocks such as DNA, proteins, and lipids, for the (self-) assembly of new structures for applications in biomedicine, optics, or electronics. Among the toolbox of available building blocks, proteins that form cage-like structures, such as viruses and virus-like particles, have been of particular interest since they form highly symmetrical assemblies and can be readily modified genetically or chemically both on the outer or inner surface. Bacterial encapsulins are a class of <i>nonviral</i> protein cages that self-assemble <i>in vivo</i> into stable icosahedral structures. Using teal fluorescent proteins (TFP) engineered with a specific native C-terminal docking sequence, we report the molecular self-sorting and selective packaging of TFP cargo into bacterial encapsulins during <i>in vivo</i> assembly. Using native mass spectrometry techniques, we show that loading of either monomeric or dimeric TFP cargo occurs with unprecedented high fidelity and exceptional loading accuracy. Such self-assembling systems equipped with self-sorting capabilities would open up exciting opportunities in nanotechnology, for example, as artificial (molecular storage or detoxification) organelles or as artificial cell factories for <i>in situ</i> biocatalysis

    Photoprogramming Allostery in Human Serum Albumin

    Get PDF
    Developing strategies to interfere with allosteric interactions in proteins not only promises to deepen our understanding of vital cellular processes but also allows their regulation using external triggers. Light is particularly attractive as a trigger being spatiotemporally selective and compatible with the physiological environment. Here, we engineered a hybrid protein in which irradiation with light opens a new allosteric communication route that is not inherent to the natural system. We select human serum albumin, a promiscuous protein responsible for transporting a variety of ligands in plasma, and show that by covalently incorporating a synthetic photoswitch to subdomain IA we achieve optical control of the ligand binding in subdomain IB. Molecular dynamics simulations confirm the allosteric nature of the interactions between IA and IB in the engineered protein. Specifically, upon illumination, photoconversion of the switch is found to correlate with a less-coordinated motion of the two subdomains and an increased flexibility of the binding pocket in subdomain IB, whose fluctuations are cooperatively enhanced by the presence of ligands, ultimately facilitating their release. Our combined experimental and computational work demonstrates how harnessing artificial molecular switches enables photoprogramming the allosteric regulation of binding activities in such a prominent protein

    Assembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tags

    Get PDF
    The packaging of proteins into discrete compartments is an essential feature for cellular efficiency. Inspired by Nature, we harness virus-like assemblies as artificial nanocompartments for enzyme-catalyzed cascade reactions. Using the negative charges of nucleic acid tags, we develop a versatile strategy to promote an efficient noncovalent co-encapsulation of enzymes within a single protein cage of cowpea chlorotic mottle virus (CCMV) at neutral pH. The encapsulation results in stable 21–22 nm sized CCMV-like particles, which is characteristic of an icosahedral <i>T</i> = 1 symmetry. Cryo-EM reconstruction was used to demonstrate the structure of <i>T</i> = 1 assemblies templated by biological soft materials as well as the extra-swelling capacity of these <i>T</i> = 1 capsids. Furthermore, the specific sequence of the DNA tag is capable of operating as a secondary biocatalyst as well as bridging two enzymes for co-encapsulation in a single capsid while maintaining their enzymatic activity. Using CCMV-like particles to mimic nanocompartments can provide valuable insight on the role of biological compartments in enhancing metabolic efficiency

    Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake

    Get PDF
    Recent years have witnessed the emergence of bacterial semiorganelle encapsulins as promising platforms for bio-nanotechnology. To advance the development of encapsulins as nanoplatforms, a functional and structural basis of these assemblies is required. Encapsulin from Brevibacterium linens is known to be a protein-based vessel for an enzyme cargo in its cavity, which could be replaced with a foreign cargo, resulting in a modified encapsulin. Here, we characterize the native structure of B. linens encapsulins with both native and foreign cargo using cryo-electron microscopy (cryo-EM). Furthermore, by harnessing the confined enzyme (i.e., a peroxidase), we demonstrate the functionality of the encapsulin for an in vitro surface-immobilized catalysis in a cascade pathway with an additional enzyme, glucose oxidase. We also demonstrate the in vivo functionality of the encapsulin for cellular uptake using mammalian macrophages. Unraveling both the structure and functionality of the encapsulins allows transforming biological nanocompartments into functional systems

    Predicting the Loading of Virus-Like Particles with Fluorescent Proteins

    Get PDF
    The virus-like particle (VLP) of the Cowpea Chlorotic Mottle Virus (CCMV) has often been used to encapsulate foreign cargo. Here we show two different rational design approaches, covalent and noncovalent, for loading teal fluorescent proteins (TFP) into the VLP. The covalent loading approach allows us to gain control over capsid loading on a molecular level. The achieved loading control is used to accurately predict the loading of cargo into CCMV VLP. The effects of molecular confinement were compared for the differently loaded VLPs created with the covalent method. We see that the loading of more than 10 fluorescent proteins in the 18 nm internal cavity of the CCMV capsid gives rise to a maximum efficiency of homo-FRET between the loaded proteins, as measured by fluorescence anisotropy. This shows that already at low levels of VLP loading molecular crowding starts to play a role
    corecore