
 

 

 University of Groningen

Self-assembly and characterization of small and monodisperse dye nanospheres in a protein
cage
Luque, Daniel; de la Escosura, Andres; Snijder, Joost; Brasch, Melanie; Burnley, Rebecca J.;
Koay, Melissa S. T.; Carrascosa, Jose L.; Wuite, Gijs J. L.; Roos, Wouter H.; Heck, Albert J.
R.
Published in:
Chemical Science

DOI:
10.1039/c3sc52276h

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Luque, D., de la Escosura, A., Snijder, J., Brasch, M., Burnley, R. J., Koay, M. S. T., ... Caston, J. R.
(2013). Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage.
Chemical Science, 5(2), 575-581. https://doi.org/10.1039/c3sc52276h

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232486372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1039/c3sc52276h
https://www.rug.nl/research/portal/en/publications/selfassembly-and-characterization-of-small-and-monodisperse-dye-nanospheres-in-a-protein-cage(80f9990b-24fe-4e31-811d-467c58edff16).html


Chemical
Science

EDGE ARTICLE

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

13
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

01
/0

3/
20

18
 1

0:
27

:0
4.

 

View Article Online
View Journal  | View Issue
aDepartment of Structure of Macromolecules

Cantoblanco, 28049 Madrid, Spain. E-mai

4506; Tel: +34 91 585 4971
bUniversidad Autónoma de Madrid, Organ

28049 Madrid, Spain. E-mail: andres.delae

Tel: +34 91 497 2773
cBiomolecular Mass Spectrometry and P

Biomolecular Research and Utrecht Institu

University, Padualaan 8, 3584 CH Utrecht,
dNetherlands Proteomics Center, Padualaan
eNatuur- en Sterrenkunde and LaserLab,

Amsterdam, The Netherlands
fLaboratory for Biomolecular Nanotechnolo

University of Twente, PO Box 217, 7500 AE

m.cornelissen@utwente.nl; Fax: +31 53 489
gIMDEA-Nanociencia, Ciudad Universitaria

E-mail: tomas.torres@uam.es; Fax: +34 91

† Electronic supplementary information
preparation of samples 1–4 and their c
UV-Vis spectroscopy, cryo-EM and AFM. S

Cite this: Chem. Sci., 2014, 5, 575

Received 13th August 2013
Accepted 30th September 2013

DOI: 10.1039/c3sc52276h

www.rsc.org/chemicalscience

This journal is © The Royal Society of C
Self-assembly and characterization of small and
monodisperse dye nanospheres in a protein cage†

Daniel Luque,a Andrés de la Escosura,*b Joost Snijder,cde Melanie Brasch,f

Rebecca J. Burnley,cd Melissa S. T. Koay,f José L. Carrascosa,a Gijs J. L. Wuite,e

Wouter H. Roos,e Albert J. R. Heck,cd Jeroen J. L. M. Cornelissen,*f Tomás Torres*bg

and José R. Castón*a

Phthalocyanines (Pc) are dyes in widespread use in materials science and nanotechnology, with numerous

applications inmedicine, photonics, electronics and energy conversion. With the aim to construct biohybrid

materials, we here prepared and analyzed the structure of two Pc-loaded virus-like particles (VLP) with

diameters of 20 and 28 nm (i.e., T ¼ 1 and T ¼ 3 icosahedral symmetries, respectively). Our cryo-

electron microscopy (cryo-EM) studies show an unprecedented, very high level of Pc molecule

organization within both VLP. We found that 10 nm diameter nanospheres form inside the T ¼ 1 VLP by

self-assembly of supramolecular Pc stacks. Monodisperse, self-assembled organic dye nanospheres

were not previously known, and are a consequence of capsid-imposed symmetry and size constraints.

The Pc cargo also produces major changes in the protein cage structure and in the mechanical

properties of the VLP. Pc-loaded VLP are potential photosensitizer/carrier systems in photodynamic

therapy (PDT), for which their mechanical behaviour must be characterized. Many optoelectronic

applications of Pc dyes, on the other hand, are dependent on dye organization at the nanoscale level.

Our multidisciplinary study thus opens the way towards nanomedical and nanotechnological uses of

these functional molecules.
Introduction

Organic dyes such as porphyrins and phthalocyanines (Pc) are
among the most promising photoactive materials for applica-
tions ranging from photodynamic therapy to non-linear optics
and organic photovoltaics.1,2 Pc are chemically and thermally
stable compounds that absorb in the red/near-infrared region
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(NIR) of the solar spectrum, with extinction coefficient values
greater than 1 � 105 M�1 cm�1.3–5 The development of nano-
structures from these dyes has attracted much attention in the
eld of materials science, mainly because the chemical, elec-
tronic and photophysical properties of the resulting nanosized
aggregates differ from those of the isolated monomers.6,7

Spherical nanoparticles composed solely of dye molecules have
been prepared, usually by the so-called reprecipitation method,8

which allows tuning of the optical properties of the dye through
non-covalent interactions.9–12 Nanoparticles obtained in this
way are amorphous and polydisperse, with sizes ranging from
30 to 100 nm, which tend to agglomerate with time.

Virus capsids and protein cages are nanoplatforms that can
be used for precise positioning of functional species,13–16 at
inner and/or outer surfaces,17–20 or as nanocontainers to
encapsulate different types of materials.21–26 One of the most
common capsids used for this purpose is that of the cowpea
chlorotic mottle virus (CCMV). CCMV is a positive, single-strand
RNA plant virus whose 28 nm diameter capsid comprises 90
coat protein (CP) dimers (180 total CP subunits, each composed
of 190 amino acid residues) that form 12 pentameric and 20
hexameric capsomers in a T ¼ 3 lattice.27,28 Assembly of the
CCMV capsid is a reversible process. At neutral pH and high
ionic strength, the capsid disassembles into CP dimers. Aer
removal of RNA, empty capsids of the same size and geometry as
Chem. Sci., 2014, 5, 575–581 | 575
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the native virus can be reassembled if the pH is reduced to 5.
This behavior has been used to encapsulate materials such as
uorescent proteins,29 enzymes30,31 and inorganic nano-
particles.21,32 At neutral pH, CP assembly requires polyanionic
templates such as negative micelles33 and synthetic anionic
polymers.34–37 These templates produce an interesting assembly
landscape of the CCMV CP38 that, depending on medium
conditions and cargo, can form a variety of structures such as
tubes39–41 and icosahedral capsids with T ¼ 1 (containing 30 CP
dimers), ‘T ¼ 2’ (60 dimers) and T ¼ 3 (90 dimers)
architecture.42–44

Although inorganic nanoparticles of various types and
functions have been grown inside virus capsids and protein
cages,13–16 this approach has not been used to template
production of purely self-assembled organic nanoparticles.
Based on our study of Pc encapsulation in virus-like particles
(VLP) as potential photosensitizer/vehicle systems for photo-
dynamic therapy (PDT),45 here we show the formation of small
and monodisperse Pc nanoparticles inside a protein cage
assembled from the CCMV CP (Fig. 1). The 20 and 28 nm VLP
under study (with T ¼ 1 and T ¼ 3 symmetries, respectively)
contain water-soluble tetrasulfonated zinc Pc (ZnPc), which
forms supramolecular H-type dimers in aqueous solution by
p–p and hydrophobic interactions.46 Our cryo-electron
microscopy three-dimensional reconstruction (cryo-EM 3DR)
of the ZnPc-loaded T ¼ 1 VLP indicates that at neutral pH, the
10 nm ZnPc nanospheres that form inside the protein cage,
template the CP assembly. In turn, connement within the
cage determines the much smaller and completely mono-
disperse size of these ZnPc nanospheres compared to that of
any other dye nanoparticle reported. The highly organized
state of ZnPc molecules within these nanospheres, as shown
by their intense electron density in the VLP cryo-EM map,
explains their dye optical behavior aer encapsulation. We
also conducted atomic force microscopy (AFM) nano-
indentation experiments, which showed that the mechanical
properties of the protein cage are affected by the inner organic
nanoparticle. These studies show a simple way to template
self-assembly of small and monodisperse dye nanospheres,
opening the way towards the use of these biohybrid materials
for nanomedical and optoelectronic applications.
Fig. 1 (a) Self-assembly of 10 nm ZnPc nanospheres within a 20 nm
(T¼ 1) protein cage formed by CCMVCP, as shown by cryo-EM 3DR of
these VLP. (b) Encapsulation of ZnPc in T¼ 3 CCMV capsids, studied by
the same technique. ZnPc structure is shown in Scheme S1, ESI.†

576 | Chem. Sci., 2014, 5, 575–581
Results and discussion
Synthesis of ZnPc-loaded VLP

ZnPc-loaded T ¼ 1 (sample 1) and T ¼ 3 (sample 2) VLP were
assembled by two routes (Fig. 1). Encapsulation of polyanionic
species in CCMV-based VLP is driven by electrostatic interac-
tions between the negative cargo (here, ZnPc) and positively
charged residues from the CP.39–45 As well as samples 1 and 2,
two additional samples were studied to establish precise
comparisons between VLP properties with and without ZnPc;
sample 3 consisted of empty T ¼ 3 capsids obtained from full-
length CP, and sample 4 contained capsid assemblies from
truncated CP (i.e., CP lacking residues 1–27/32; see below).

To prepare sample 1, ZnPc and CP were incubated (at nal
concentrations of 3 and 0.35 mM, respectively) in Tris–HCl
buffer (50 mM, 0.3 M NaCl, 1 mM dithiothreitol, pH 7.5) and
puried by preparative size exclusion chromatography (SEC)
(Fig. S1a, ESI†). This process yields stable ZnPc-loaded T ¼ 1
VLP, although mass spectrometry (MS) analysis showed a small
additional population that could represent ZnPc-loaded ‘T ¼ 2’
particles (Fig. 2a, top). The mass of the ZnPc-loaded T ¼ 1 VLP
was determined by tandem MS as 1.3 MDa, which indicates an
Fig. 2 MS spectra of ZnPc-loaded VLP. Top panels: native MS spectra;
bottom panels: tandem MS analysis. Signals assigned to ZnPc-loaded
VLP (red); empty VLP (blue). The additional signals are attributed to ‘T¼
2’ particles in (a) and aberrant structures in (b). (a) Estimate of ZnPc
molecule number in T ¼ 1 VLP (sample 1) with tandemMS. The shaded
area (top) was selected and dissociated (bottom), yielding ion resolved
signals on both the precursor and the first dissociation product. The
resulting masses from the ion resolved signals are 1340 � 1.2 kDa and
1330 � 1.2 kDa for precursor and product, respectively (mean �
standard deviation over all charge states). This corresponds to an
average of 259 and 249 ZnPc molecules, respectively (details in Table
S1, ESI†). (b) Estimate of ZnPc molecule number in T ¼ 3 VLP (sample
2). Masses of precursor and product are 3476� 0.7 kDa and 3444� 1.3
kDa, respectively, corresponding to 417 and 405 ZnPc molecules
(details in Table S1, ESI†). The mass of ZnPc is 892 Da.

This journal is © The Royal Society of Chemistry 2014
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average of 250 ZnPc molecules per capsid (Fig. 2a, bottom). The
lack of ion resolution on intact particles indicates substantial
mass heterogeneity in the VLP, which is also clear from the
relatively broad peaks observed in tandem MS analyses.

Sample 2 was prepared by incubation of ZnPc and empty T¼
3 capsids (starting concentrations of 3 mM ZnPc and 0.35 mM
CP) in sodium acetate buffer (50 mM, 1 M NaCl, 1 mM NaN3,
pH 5) and preparative SEC (Fig. S1b, ESI†). In these conditions,
ZnPc molecules diffuse into the capsids through their pores,
driven by electrostatic attractive interactions with positively
charged residues on the CP inner surface. When sample 2 was
dialyzed against fresh buffer, ZnPc diffused out of the capsids,
suggesting that the encapsulation is an equilibrium process. MS
analysis conrmed this observation; in addition to the major
peak for ZnPc-loaded T ¼ 3 VLP, we detected peaks for empty
T ¼ 3 capsids, as well as a small proportion of ZnPc-loaded T ¼
1/‘T ¼ 2’ particles or aberrant structures (Fig. 2b, top). These
data are in marked contrast with those obtained for control
samples 3 and 4 (Fig. S2, ESI†). Using tandem MS, we deter-
mined themass of the ZnPc-loaded T¼ 3 VLP as 3.5MDa, which
indicates an average of 400 ZnPc molecules per capsid (Fig. 2b,
bottom).

We used MS data to obtain information regarding CP
sequence composition in the VLP. Empty T ¼ 3 capsids
(sample 3) were composed of full-length CP, whereas ZnPc-
loaded T ¼ 1 and T ¼ 3 VLP contained mainly truncated CP
(residues 28/33–190; Fig. S3, ESI†). This truncation in the ZnPc-
loaded VLP could be due to prolonged incubation at pH 7.5
during sample handling. Extended incubation of disassembled
CP at pH 7.5 (i.e., sample 4) led to near-complete truncation
(Fig. S3, ESI† bottom), but ZnPc–CP interactions might also
affect CP truncation.

The MS results indicated that the CP N terminus is not
necessary to retain ZnPc in the VLP. We postulate that residues
involved in CP–RNA interactions in the native virus (Glu34,
Lys42, Lys45, Trp47, Thr48, Arg82, Lys87, Arg90, Glu140,
Lys143, Arg179, Thr181 and Asp184; all present in ordered CP
regions)27 interact with ZnPc. The seven positively-charged
residues (4 Lys, 3 Arg) might interact with the negatively-
charged ZnPc sulfonate groups, and Thr, Glu and Asp resi-
dues could coordinate (via OH and COOH groups) the zinc
metal center, whereas Trp47 might mediate aromatic interac-
tions with the dye.
Structure of ZnPc-loaded VLP

To study the structure of ZnPc-loaded T ¼ 1 and T ¼ 3 VLP,
using the empty T ¼ 3 capsid as a reference, we analyzed
samples 1, 2 and 3 by cryo-EM. Electron micrographs of the
particles and their 3DR are shown (Fig. 3 and S4, ESI†); particle
dimensions are inferred from the radial density proles from
3Dmaps (Fig. 4). For each VLP type, the majority of the particles
were structurally homogeneous.

Cryo-EM analysis of empty T ¼ 3 capsids. Sample 3 was
formed by three populations of assembled particles (Fig. 3a
and d). We observed two sizes of empty T ¼ 3 capsids, termed
A- (Fig. 3d, le) and B-capsids (Fig. 3d, center). The radial
This journal is © The Royal Society of Chemistry 2014
difference was small (14.0 and 14.2 nm, respectively; Fig. 4, red
and black curves), but sufficiently large to obtain higher
resolution 3DR maps than a single 3DR with mixed particles.
A- and B-capsids made up 58% of total particles in the sample
(28% A-capsids, 30% B-capsids). The presence of two particle
sizes is probably due to CP conformational exibility, and
differs from dynamic swelling of the CCMV capsid, which
produces larger size changes (i.e., ca. 5%)47 in comparison to
the present case (i.e., ca. 1%). The density for the characteristic
b-annulus, due to CP N-terminal residues (29–33) at the
threefold axes,48 was detected only in B-capsids (Fig. 3d,
arrows), which suggests an increase in order of the N termini
in hexameric capsomers. In addition, 25.2 nm diameter
particles were observed in sample 3 (Fig. 4, blue curve; 19% of
total particles), from which we reconstructed the ‘T ¼ 2’ capsid
map (Fig. 3d, right). The remaining particulate material in
sample 3 (23% of total particles) was irregular or did not show
icosahedral symmetry and was not included in any of the
density maps.

Cryo-EM analysis of ZnPc-loaded T ¼ 3 VLP. The 3DR of
ZnPc-loaded T ¼ 3 VLP (sample 2) showed additional densities
that cannot be ascribed to CP (Fig. 3e, blue). These extra
densities must be due to ZnPc, and provided data on their
location and organization within the protein cage. Capsid
structure was almost identical to that of the T ¼ 3 empty
capsids, both in the large depression/pore size (Fig. 3e, top) and
radius (14.6 nm; Fig. 4, green curve). In the capsid interior, the
ZnPc density was beneath the hexamers, with no extra density in
front of pentamers (Fig. 3e, bottom). The radial density plot
showed ZnPc-related densities at a radius of 8.2 nm (Fig. 4,
green arrow). The ZnPc location beneath hexameric capsomers
is probably related to the greater order of CCMV CP positively
charged residues in hexamers than in pentamers (see below).48

Each of the encapsulated ZnPc dimers (as found in aqueous
solution and within the T ¼ 3 VLP) contains 8 negative charges
that can interact with the 7 or 8 accessible, positively-charged
CP residues. The densities for icosahedral ordered ZnPc
account for only a fraction of the total encapsulated ZnPc
molecules (an average of 400 ZnPc molecules as estimated by
MS); a large number of ZnPc dimers in the capsid interior thus
do not follow icosahedral symmetry (Fig. S5a, ESI†).

Cryo-EM analysis of ZnPc-loaded T ¼ 1 VLP. The radius (10.2
nm; Fig. 4, yellow curve) and morphology of ZnPc-loaded T ¼ 1
VLP (sample 1) are consistent with the 60 CP subunit arrange-
ment with T ¼ 1 symmetry (Fig. 3f). There were nonetheless
notable differences with the T¼ 1 capsids reported for a mutant
CCMV protein (ND34, which lacks most of the N-terminal
domain);49 in the absence of a polyanionic template, this
particle symmetry can only be obtained by such a mutation. The
pores at threefold axes were much larger in ZnPc-loaded T ¼ 1
VLP than in ND34 T ¼ 1 capsids (Fig. 3f, top). We show that, in
addition to the cargo effect on capsid structure, the capsid
imposes organization on the ZnPc. The cryo-EM map indicated
a conspicuous ZnPc density in the capsid interior (Fig. 3f,
bottom, blue), with spherical morphology and a 5.2 nm radius
(Fig. 4, yellow curve). To be detected, ZnPc molecules must be
well organized within the spheres.
Chem. Sci., 2014, 5, 575–581 | 577
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Fig. 3 Three-dimensional cryo-EM reconstructions of empty and ZnPc-loaded CCMV capsids. Cryo-EM of samples (a) 3, (b) 2 and (c) 1. Scale
bar, 50 nm. (d–f) Surface-shaded representations of the outer (top row) and inner surfaces (bottom row), viewed along an icosahedral twofold
axis : cryo-EM 3DR of the (d) A-capsid (diameter 28.0 nm), B-capsid (28.4 nm) and ‘T¼ 2’ capsid (25.2 nm), all empty and present in sample 3; (e)
ZnPc-loaded T ¼ 3 VLP (29.2 nm), in sample 2; and (f) ZnPc-loaded T ¼ 1 VLP (20.4 nm), in sample 1. Scale bar, 10 nm.

Fig. 4 Radial density profiles from 3D maps of the capsids.
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Pseudo-atomic models of ZnPc-loaded VLP

Docking the CCMV capsid protein crystal structure (PDB 1CWP)
into the cryo-EM density maps of ZnPc-loaded T ¼ 3 and T ¼ 1
VLP showed marked structural differences (Fig. 5).

For ZnPc-loaded T ¼ 3 VLP, the ends of the hexameric CP N-
terminal arms (at residue 28, the rst non-truncated residue)
were in close proximity and contacted the ZnPc density (Fig. 5a,
le; yellow and green spheres for B and C subunits, respec-
tively). The surface Coulomb potential on the inner capsid shell
(Fig. 5a, right) showed that positively charged CP residues were
also closer at threefold axes (i.e., in hexameric capsomers) than
at vefold axes. This effect is necessarily related to ZnPc dimer
binding by CP hexamers.
578 | Chem. Sci., 2014, 5, 575–581
For ZnPc-loaded T ¼ 1 VLP, the CP N-terminal arms (Fig. 5b,
le) and positively charged residues (Fig. 5b, right) were
distributed more distantly and homogeneously around the
vefold axes on the capsid interior surface. This pentameric CP
subunit arrangement might be explained by the need to bind
the spherical ZnPc cargo, leading in turn tomuch larger pores at
threefold axes than those in ND34 T ¼ 1 capsids.49

We analyzed the hinge angle formed between CP dimers in
each VLP type. An earlier study of empty T ¼ 3 capsids showed
hinge dihedral angles of 38� for A–B (at quasi–twofold axes) and
42� for C–C dimers (at twofold axes), whereas the angle was 45�

for CP dimers in T ¼ 1 capsids assembled from the ND34 CP
mutant.49 In ZnPc-loaded T ¼ 3 VLP, the hinge dihedral angles
for A–B (Fig. 6a) and C–C dimers (Fig. 6b) were identical to those
reported for the empty T ¼ 3 capsid. In contrast, ZnPc-loaded
T ¼ 1 VLP CP dimers had a hinge dihedral angle of 62�

(Fig. 6c), much larger than that of the ND34 T ¼ 1 capsid. This
large hinge dihedral angle resembles that found at the quasi-
twofold axes of the swollen CCMV capsid.50 We postulated
that these differences in protein cage structure between ZnPc-
loaded VLP might lead to distinct mechanical properties.
Mechanical properties of ZnPc-loaded VLP

The mechanical properties of virus capsids, as determined by
AFM nanoindentation, are a physical signature of capsid
stability and conformational dynamics.51 To test the effect of
ZnPc encapsulation on the stability of ZnPc-loaded VLP, we
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Pseudo-atomic model of ZnPc-loaded T¼ 3 and T¼ 1 capsids. (a) T¼ 3 and (b) T¼ 1 capsid viewed down a twofold axis from inside, with
docked CCMV protein atomic coordinates (left). The three types of CP subunits (A, B and C) are depicted in blue, red and green, respectively. B
and C N termini converge at the threefold axis (the last visible N-terminal residue is indicated as a sphere). (a, b, right) As above, with electrostatic
potentials shown for accessible inner surfaces, indicating negative (red) and positive (blue) charge distribution.

Fig. 6 Dihedral angles for CP dimers in ZnPc-loaded T ¼ 3 and T ¼ 1
VLP. (a) A–B and (b) C–C dimers in ZnPc-loaded T ¼ 3 VLP. (c) A–A
dimers in ZnPc-loaded T¼ 1 VLP. Side (left) and top (right) views. Hinge
dihedral angles are indicated for the three CP dimer types.

Fig. 7 (a) AFM images of CCMV-based VLP. Bars ¼ 20 nm. Images are
colored according to height, from dark-brown (low) to white (high),
and maximum z is indicated. (b) Height distributions of CCMV-based
VLP as determined from AFM images. (c) Mechanical properties of
CCMV-based VLP. The spring constant (k) is shown in the top panel
and the breaking force (Fbreak) in the bottom panel. Data are shown as
mean � SEM. Significance was tested by one-way ANOVA; p < 0.0023
for spring constant, p < 0.0001 for breaking force. Single asterisks (*)
indicate p < 0.01 in Bonferroni-corrected t-testing between ‘T ¼ 3,
empty’ and other particle types. Double asterisks (**) indicate p < 0.01
in Bonferroni-corrected t-testing between ‘T ¼ 1, ZnPc’ and other
particle types.
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compared them to empty capsids (sample 3); to differentiate CP
truncation from ZnPc encapsulation effects, empty capsids with
truncated CP were included in the analysis (sample 4). All VLP
appeared as rounded particles in AFM imaging (Fig. 7a). Particle
heights were consistent with T ¼ 1 and T ¼ 3 capsids, and with
the mass distributions found by native MS. Sample 2 showed
three populations of particles with different heights, whereas
sample 1 was monodisperse, containing only VLP correspond-
ing to T ¼ 1 capsids (Fig. 7b).

We measured force–distance curves of the VLP (Fig. S6,
ESI†). Spring constants and breaking forces for ZnPc-loaded
T ¼ 1 and T ¼ 3 VLP were �60% and 30% lower than those
of empty T ¼ 3 capsids with full-length CP (Fig. 7c). Empty T ¼
3 particles with truncated CP showed a similar 30% decrease
in mechanical resilience. Based on these ndings, we inferred
that CP truncation reduces the mechanical resilience of
ZnPc-loaded T ¼ 3 VLP. ZnPc-loaded T ¼ 1 VLP also showed
This journal is © The Royal Society of Chemistry 2014
markedly reduced stability compared to ZnPc-loaded T ¼ 3
VLP, which can be ascribed to the structural differences
between their protein cages. We postulate that the large
difference in the hinge dihedral angle in T ¼ 1 VLP CP dimers
compared to T ¼ 3 capsids determines their mechanical
lability.
Chem. Sci., 2014, 5, 575–581 | 579
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Implications of the ZnPc-loaded T ¼ 1 VLP structure

In addition to the inuence of the structures of ZnPc-loaded
VLP on their mechanical behaviour, other properties of these
assemblies are intimately related to their striking architectural
features. The UV-Vis spectrum of the ZnPc-loaded T ¼ 3 VLP
(sample 2) showed the absorption maximum at 635 nm, indi-
cating ZnPc dimer formation as occurs in aqueous solutions
(Fig. S1c and S5a, ESI†),45,46 whereas the absorption maximum
of ZnPc-loaded T¼ 1 VLP (sample 1) was 613 nm (Fig. S1c, ESI†).
We interpret these data based on our nding that the ZnPc
forms nanospheres in T ¼ 1 VLP. Size constriction of functional
inorganic compounds to nanoscopic dimensions can provoke
substantial changes in optical properties (e.g., plasmonic effects
in quantum dots and gold nanoparticles).52 Although this
behavior is uncommon for organic nanostructures, we observed
a clear hypsochromic absorption shi (from 635 to 613 nm) as a
result of the organization imposed on the ZnPc by T ¼ 1 VLP.

Our ndings suggest that to be packed as nanospheres, ZnPc
molecules within T¼ 1 VLP are forced to self-assemble into long
supramolecular stacks. Because the absorption shi is hyp-
sochromic, the stacks are deduced to be type H (cofacial). We
propose a model for this packaging, in which up to 18 ZnPc 10-
mer stacks are tted in the ZnPc density; stacks are parallel to
the inner capsid wall in an arrangement reminiscent of an old-
fashioned soccer ball (Fig. 8). These 180 ZnPc molecules would
form a �1.5 nm thick spherical shell, inside which a concentric
ZnPc shell could form until the average of 250 ZnPc molecules
per VLP is reached (as shown by MS analysis). In this model,
�3.0 to 3.5 nm thick ZnPc shells would produce a hollow
nanosphere, as inferred from the cryo-EM 3DR radial density
prole. Other ZnPc H-type stack arrangements such as radial
stacks (see Fig. S5b, ESI†) can also be tted, and thus should not
be fully ruled out, although this would lead to greater electro-
static repulsion between negative charges of ZnPc stacks near
the nanosphere core.

Our studies help to clarify the assembly mechanism of these
ZnPc-loaded T¼ 1 VLP. Assembly of CCMV empty T¼ 3 capsids
proceeds by adding CP dimers to a preformed pentameric
nucleation center.49 The kinetics of T ¼ 3 capsid assembly
differs when viral nucleic acid is present, presumably initiated
by formation of an irregular nucleoprotein aggregate (similar to
Fig. 8 Model of ZnPc organization within ZnPc-loaded T ¼ 1 VLP,
based on fitting supramolecular ZnPc stacks into the internal density of
cryo-EM 3D-reconstructed particles. The scheme shows 10-mer ZnPc
stacks (colors); only the outermost layer (180 ZnPc molecules) is
shown. The ZnPc structure was modeled by molecular mechanics
using Spartan’10 software.
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a reverse micelle), on whose surface additional CP subunits are
assembled.53 An analogous process might operate in CCMV-
based VLP assembly at neutral pH, templated by polyanions
such as gold nanoparticles coated with carboxylated PEG.22,23

We hypothesize that ZnPc dimers can nucleate CP pentamer
and hexamer formation. The greater curvature and smaller
cavity of T ¼ 1 capsids generated by addition of ZnPc dimer–CP
pentamer complexes to the rst pentameric nuclei would allow
denser ZnPc packing, generating larger ZnPc stacks. ZnPc
nanospheres would thus form gradually, driving assembly
towards complete T ¼ 1 capsids. Further study is needed to
establish the precise structure of intermediate species.

Conclusions

ZnPc incorporation into protein cages composed of the CCMV
capsid protein leads to a T ¼ 1 VLP with unique structural
features. CP assembly at neutral pH fosters ZnPc stack aggre-
gation, which leads to formation of 10 nm ZnPc nanospheres.
Such small, organized dye nanostructures, a consequence of
capsid-imposed symmetry and size constraints, have not been
described previously. Encapsulation of the ZnPc cargo produces
substantial structural changes in the protein cage and alters its
mechanical properties. To improve VLP stability for efficient
PDT drug delivery, its mechanical properties must be charac-
terized. There are also many optoelectronic applications of Pc
dyes that are dependent on dye organization at the nanoscale
level.3–7 Multidisciplinary studies such as the one presented
herein are thus necessary for implementing nanomedical and
nanotechnological uses of these biohybrid materials.
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