16 research outputs found

    Polar record of Early Jurassic massive carbon injection

    Get PDF
    The Toarcian Oceanic Anoxic Event (T-OAE) (ca. 182 Myr, EarlyJurassic) represents one of the best-recognized examples of greenhouse warming, decreased seawater oxygenation and mass extinction. The leading hypothesis to explain these changes is the massive injection of thermogenic or gas hydrate-derived 13C-depleted carbon into the atmosphere, resulting in a > 3 per mil negative carbon isotope excursion (CIE), accelerated nutrient input and dissolved oxygen consumption in the oceans. Nevertheless, the lack of a precisely dated record of the T-OAE outside low latitudes has led to considerable debate about both its temporal and spatial extent and hence concerning its underlying causes. Here we present new isotopic and lithological data from three precisely dated N Siberian sections, which demonstrate that mass extinction and onset of strong oxygen-deficiency occurred near synchronously in polar and most tropical sites and were intimately linked to the onset of a marked 6‰ negative CIE recorded by bulk organic carbon. Rock Eval pyrolysis data from Siberia and comparisons with low latitudes show that the CIE cannot be explained by the extent of stratification of the studied basins or changes in organic matter sourcing and suggest that the negative CIE reflects rapid 13C-depleted carbon injection to all exchangeable reservoirs. Sedimentological and palynological indicators show that the injection coincided with a change from cold (abundant glendonites and exotic boulder-sized clasts) to exceptionally warm conditions (dominance of the thermophyllic pollen genus Classopollis) in the Arctic, which likely triggered a rapid, possibly partly glacioeustatic sea-level rise. Comparisons with low latitude records reveal that warm climate conditions and poor marine oxygenation persisted in continental margins at least 600 kyr after the CIE, features that can be attributed to protracted and massive volcanic carbon dioxide degassing. Our data reveal that the T-OAE profoundly affected Arctic climate and oceanography and suggest that the CIE was a consequence of global and massive 13C-depleted carbon injection

    First terahertz-range experiments on pump – probe setup at Novosibirsk free electron laser

    Get PDF
    A single-color pump-probe system has been commissioned at the Novosibirsk free electron laser. The laser emits a tunable monochromatic terahertz radiation. To prove the proper system operation, we investigated the time-resolved absorption of a sample of n-type germanium doped with antimony, which was previously investigated at the FELBE facility, in the temperature range from 5 to 40 K. The measured relaxation time amounted to about 1.7 ns, which agreed with the results obtained at the FELBE. The results of pump-probe measurements of non-equilibrium dynamics of hot electrons in the germanium crystal at cryogenic temperatures are presented for wavelengths of 105, 141 and 150 μm

    EEG and fMRI Correlates of Insight: A Pilot Study

    No full text
    Insight is described as the sudden solution of a problem and is contrasted with an analytical, step-by-step approach. Traditionally, insight is thought to be associated with activity of the right hemisphere, whereas analytical solutions are thought to be associated with activity of the left hemisphere. However, empirical evidence as to the localization of insight-related brain activity is mixed and inconclusive. Some studies seem to confirm the traditional view, whereas others do not. Moreover, results of EEG and fMRI studies frequently contradict each other. In this study, EEG and fMRI data were recorded while subjects performed the remote association test and for each solved problem were asked to report whether the solution was reached analytically or insightfully. The data were analyzed in a 16-second fragment preceding the subject’s response. Source localization techniques were used in the analysis of EEG data. Based on EEG data, insightful as compared to analytical problem solving was accompanied by high-frequency synchronization in semantic cortical areas of the left hemisphere 10–12 s before the subject’s response. Based on fMRI data, however, insightful solutions were accompanied by increased activity in frontal and temporal regions of the right hemisphere. The results are interpreted in terms of different cognitive processes involved in insightful problem solving, which could be differently reflected in EEG and fMRI data
    corecore