45 research outputs found
Application of the quemada viscosity model for drilling fluids
A number of different models are used to describe the shear rate dependent viscosity of drilling fluids. Most, such as the Herschel-Bulkley model, have a purely empirical basis. The Quemada model, while still empirical, is based on physical principles. It is based on the notion that structural units develop in the fluid at low shear rates which are then partially broken down as the applied shear rate increases. In the current work, drilling fluid rheological data are fitted to the Herschel-Bulkley and the Quemada model. The development of the Quemada model and the calculation of each model parameter are presented. We show that the Quemada model better fits measurements over a wider range of shear rates than the Herschel-Bulkley model. We describe how to select the parameters of the Quemada model. Knowing the difficulty of obtaining a known shear rate for fluids with yield stresses, we discuss how this can affect the quality of the Quemada model fit. Furthermore, in principle, the Quemada model is not applicable in presence a non-zero yield stress. Therefore, we show how to handle the yield stress using a (very high) zero shear rate viscosity.acceptedVersio
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.
Cellular ATP is mainly generated through mitochondrial oxidative phosphorylation, which is dependent on mitochondrial DNA (mtDNA). We have previously demonstrated the importance of oocyte mtDNA for porcine and human fertilization. However, the role of nuclear-encoded mitochondrial replication factors during oocyte and embryo development is not yet understood. We have analyzed two key factors, mitochondrial transcription factor A (TFAM) and polymerase gamma (POLG), to determine their role in oocyte and early embryo development. Competent and incompetent oocytes, as determined by brilliant cresyl blue (BCB) dye, were assessed intermittently during the maturation process for TFAM and POLG mRNA using real-time RT-PCR, for TFAM and POLG protein using immunocytochemistry, and for mtDNA copy number using real-time PCR. Analysis was also carried out following treatment of maturing oocytes with the mtDNA replication inhibitor, 2',3'-dideoxycytidine (ddC). Following in vitro fertilization, preimplantation embryos were also analyzed. Despite increased levels of TFAM and POLG mRNA and protein at the four-cell stage, no increase in mtDNA copy number was observed in early preimplantation development. To compensate for this, mtDNA appeared to be replicated during oocyte maturation. However, significant differences in nuclear-encoded regulatory protein expression were observed between BCB(+) and BCB(-) oocytes and between untreated oocytes and those treated with ddC. These changes resulted in delayed mtDNA replication, which correlated to reduced fertilization and embryonic development. We therefore conclude that adherence to the regulation of the timing of mtDNA replication during oocyte maturation is essential for successful embryonic development
Risks for human and animal health related to the presence of phorbol esters in Jatropha kernel meal
The Panel wishes to thank the members of the Working Group on Phorbol Esters: Bruce Cottrill, Stefano Dall'Acqua, Johanna Fink-Gremmels, Harinder P.S. Makkar and Manfred Metzler for the preparatory work on this scientific opinion, and EFSA staff: Marco Binaglia, Karen Mackay and Rositsa Serafimova for the support provided to this scientific opinion.Peer reviewedPublisher PD
Presence of microplastics and nanoplastics in food, with particular focus on seafood
The Panel wishes to thank the members of the Working Group on the presence of microplastics and nanoplastics in food, with particular focus on seafood: Francesco Cubadda, Christer Hogstrand, Peter Hollman, Hendrik Van Loveren, Anne-Katrine Lundebye and Annette Petersen for the preparatory work on this statement, the hearing expert: Stephanie Wright and EFSA staff member: Karen Mackay for the support provided to this statement.Peer reviewedPublisher PD
Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels
Peer reviewedPublisher PD
Malachite green in food
The Panel wishes to thank the members of the Standing Working Group on non-allowed pharmacologically active substances in food and feed and their reference points for action (2015–2018): Metka Filipič, Peter Fürst, Laurentius (Ron) Hoogenboom, Anne-Katrine Lundebye, Carlo Stefano Nebbia, Michael O'Keeffe and Rolaf Van Leeuwen for the preparatory work on this scientific output, the hearing expert: Eva Persson, and EFSA staff members: Katleen Baert and Sofia Ioannidou for the support provided to this scientific opinion. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on malachite green and leucomalachite green in food, and supported the data collection for the Comprehensive European Food Consumption Database.Peer reviewedPublisher PD
Recommended from our members
Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits
Abstract: Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies
Recommended from our members
Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits
Abstract: Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies
Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements
The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output. Adopted: 21 June 2017Peer reviewedPublisher PD