1,765 research outputs found

    A spiking neural network model of rodent head direction calibrated with landmark free learning

    Get PDF
    Maintaining a stable estimate of head direction requires both self-motion (idiothetic) information and environmental (allothetic) anchoring. In unfamiliar or dark environments idiothetic drive can maintain a rough estimate of heading but is subject to inaccuracy, visual information is required to stabilize the head direction estimate. When learning to associate visual scenes with head angle, animals do not have access to the 'ground truth' of their head direction, and must use egocentrically derived imprecise head direction estimates. We use both discriminative and generative methods of visual processing to learn these associations without extracting explicit landmarks from a natural visual scene, finding all are sufficiently capable at providing a corrective signal. Further, we present a spiking continuous attractor model of head direction (SNN), which when driven by idiothetic input is subject to drift. We show that head direction predictions made by the chosen model-free visual learning algorithms can correct for drift, even when trained on a small training set of estimated head angles self-generated by the SNN. We validate this model against experimental work by reproducing cue rotation experiments which demonstrate visual control of the head direction signal

    Reaction rate theory for supramolecular kinetics: application to protein aggregation

    Get PDF
    Probing the reaction mechanisms of supramolecular processes in soft- and biological matter, such as protein aggregation, is inherently challenging. These processes emerge from the simultaneous action of multiple molecular mechanisms, each of which is associated with the rearrangement of a large number of weak bonds, resulting in a complex free energy landscape with many kinetic barriers. Reaction rate measurements of supramolecular processes at different temperatures can offer unprecedented insights into the underlying molecular mechanisms and their thermodynamic properties. However, to be able to interpret such measurements in terms of the underlying microscopic mechanisms, a key challenge is to establish which properties of the complex free energy landscapes are probed by the reaction rate. Here, we present a reaction rate theory for supramolecular kinetics based on Kramers rate theory for diffusive reactions over multiple kinetic barriers, and apply the results to protein aggregation. Using this framework and Monte Carlo simulations, we show that reaction rates for protein aggregation are of the Arrhenius-Eyring type and that the associated activation energies probe only one relevant barrier along the respective free energy landscapes. We apply this advancement to interpret, both in experiments and in coarse-grained computer simulations, reaction rate measurements of amyloid aggregation kinetics in terms of the underlying molecular mechanisms and associated thermodynamic signatures. Our results establish a general platform for probing the mechanisms and energetics of supramolecular phenomena in soft- and biological matter using the framework of chemical kinetics

    Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    Get PDF
    Swine vesicular disease virus (SVDV) is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal) vesicular disease in pigs. We report a rapid method that is suitable for sequencing the complete protein-encoding sequences of SVDV isolates in which the RNA is relatively intact. The approach couples a single PCR amplification reaction, using only a single PCR primer set to amplify the near-complete SVDV genome, with deep-sequencing using a small fraction of the capacity of a Roche GS FLX sequencing platform. Sequences were initially verified through one of two criteria; either a match between a de novo assembly and a reference mapping, or a match between all of five different reference mappings performed against a fixed set of starting reference genomes with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence in the obtained consensus sequences, as well as provides sufficiently high and evenly dispersed sequence coverage to allow future studies of intra-host variation

    Evaluation of mass spectrometric methods for detection of the anti-protozoal drug imidocarb

    Get PDF
    Imidocarb [N,N\u27-bis[3-(4,5-dihydro-1H-imidazol-2-yl)phenyl]urea, C19H20N6O1, m.w. 348.41] is a symmetrical carbanilide derivative used to treat disease caused by protozoans of the Babesia genus. Imidocarb, however, is also considered capable of suppressing Babesia-specific immune responses, allowing Babesia-positive horses to pass a complement fixation test (CFT) without eliminating the infection. This scenario could enable Babesia-infected horses to pass CFT-based importation tests. It is imperative to unequivocally identify and quantify equine tissue residues of imidocarb by mass spectrometry to address this issue. As a pretext to development of sensitive tissue assays, we have investigated possibilities of mass spectrometric (MS) detection of imidocarb. Our analyses disclosed that an unequivocal mass spectral analysis of imidocarb is challenging because of its rapid fragmentation under standard gas chromatography (GC)-MS conditions. In contrast, solution chemistry of imidocarb is more stable but involves distribution into mono- and dicationic species, m/z 349 and 175, respectively, in acid owing to the compound\u27s inherent symmetrical nature. Dicationic imidocarb was the preferred complex as viewed by either direct infusion-electrospray-MS or by liquid chromatography (LC)-MS. Dicationic imidocarb multiple reaction monitoring (MRM: m/z 175 → 162, 145, and 188) therefore offer the greatest opportunities for sensitive detection and LC-MS is more likely than GC-MS to yield a useful quantitative forensic analytical method for detecting imidocarb in horses

    An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles

    Get PDF
    The fundamental importance of membrane proteins in drug discovery has meant that membrane mimetic systems for studying membrane proteins are of increasing interest. One such system has been the amphipathic, negatively charged poly(styrene-co-maleic acid) (SMA) polymer to form “SMA Lipid Particles” (SMALPs) which have been widely adopted to solubilize membrane proteins directly from the cell membrane. However, SMALPs are only soluble under basic conditions and precipitate in the presence of divalent cations required for many downstream applications. Here, we show that the positively charged poly(styrene-co-maleimide) (SMI) forms similar nanoparticles with comparable efficiency to SMA, whilst remaining functional at acidic pH and compatible with high concentrations of divalent cations. We have performed a detailed characterization of the performance of SMI that enables a direct comparison with similar data published for SMA. We also demonstrate that SMI is capable of extracting proteins directly from the cell membrane and can solubilize functional human G-protein coupled receptors (GPCRs) expressed in cultured HEK 293T cells. “SMILPs” thus provide an alternative membrane solubilization method that successfully overcomes some of the limitations of the SMALP method

    Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation

    Get PDF
    Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications in many research areas ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focussing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of filament nucleation that includes a conformational conversion of the nucleating building-block as an additional slow step in the nucleation process. Using computer simulations, we study the concentration dependence of the nucleation rate. We find that, under these circumstances, the reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in the conformational conversion. Our results thus provide a novel interpretation of the common kinetic descriptors of protein filament formation, including the reaction order of the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical descriptions of protein aggregation.We acknowledge support from the Human Frontier Science Program and Emmanuel College (A.Š.), St John’s and Peterhouse Colleges (T.C.T.M.), the Swiss National Science Foundation (T.C.T.M.), the Biotechnology and Biological Sciences Research Council (T.P.J.K.), the Frances and Augustus Newman Foundation (T.P.J.K.), the European Research Council (T.C.T.M., T.P.J.K., and D.F.), and the Engineering and Physical Sciences Research Council (D.F.)

    Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease.

    Get PDF
    Disordered proteins are challenging therapeutic targets, and no drug is currently in clinical use that modifies the properties of their monomeric states. Here, we identify a small molecule (10074-G5) capable of binding and sequestering the intrinsically disordered amyloid-β (Aβ) peptide in its monomeric, soluble state. Our analysis reveals that this compound interacts with Aβ and inhibits both the primary and secondary nucleation pathways in its aggregation process. We characterize this interaction using biophysical experiments and integrative structural ensemble determination methods. We observe that this molecule increases the conformational entropy of monomeric Aβ while decreasing its hydrophobic surface area. We also show that it rescues a Caenorhabditis elegans model of Aβ-associated toxicity, consistent with the mechanism of action identified from the in silico and in vitro studies. These results illustrate the strategy of stabilizing the monomeric states of disordered proteins with small molecules to alter their behavior for therapeutic purposes
    • …
    corecore