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ABSTRACT
Probing reaction mechanisms of supramolecular processes in soft and biological matter, such as
protein aggregation, is inherently challenging. This is because these processes involve multiple
molecularmechanisms that are associatedwith the rearrangement of large numbers of weak bonds,
resulting in complex free energy landscapeswithmany kinetic barriers. Reaction ratemeasurements
at different temperatures can offer unprecedented insights into the underlying molecular mecha-
nisms. However, to be able to interpret such measurements, a key challenge is to establish which
properties of the complex free energy landscapes are probed by the reaction rate. Here, we present
a reaction rate theory for supramolecular kinetics based on Kramers theory of diffusive reactions
over multiple kinetic barriers. We find that reaction rates for protein aggregation are of the Arrhe-
nius–Eyring type and that the associated activation energies probe only one relevant barrier along
the respective free energy landscapes. We apply this advancement to interpret, in experiments and
in coarse-grained computer simulations, reaction rates of amyloid aggregation in terms ofmolecular
mechanisms and associated thermodynamic signatures. These results suggest a practical extension
of the concept of rate-determining steps for complex supramolecular processes and establish a
general platform for probing the underlying energy landscape using kinetic measurements.

ARTICLE HISTORY
Received 1 March 2018
Accepted 24 April 2018

KEYWORDS
Rate-determining step;
energy of activation;
amyloid; nucleation;
coarse-grained computer
simulations

CONTACT Anđela Šarić a.saric@ucl.ac.uk Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College
London, Gower Street, London WC1E 6BT, UK; Tuomas P. J. Knowles tpjk2@cam.ac.uk Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge CB2 1EW, UK, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
*LXL and SC contributed equally to this work.

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2018.1474280

© 2018 Informa UK Limited, trading as Taylor & Francis Group.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1474280&domain=pdf
mailto:a.saric@ucl.ac.uk
mailto:tpjk2@cam.ac.uk
https://doi.org/10.1080/00268976.2018.1474280


3056 T. C. T. MICHAELS ET AL.

1. Introduction andmotivation

Themechanisms ofmacromolecular reactions in soft and
biological matter, such as protein–protein association or
protein aggregation, are notoriously difficult to probe
in experiments. This difficulty originates from the fact
that these complexmacromolecular processes involve the
concurrent making and breaking of very large numbers
of bonds and interactions between the multiple molecu-
lar species present. Historically, the key for investigating
molecular mechanisms of small molecule reactions has
been to probe the underlying free energy landscape by
measuring the temperature dependence of the reaction
rates. Reaction rate theory then provides the framework
for relating these measurements to the thermodynamics
of the underlying free energy landscape.

The discipline of rate theory was established when
Arrhenius [1] described the temperature dependence of
the rate k of a chemical reaction in terms of what is
now known as the Arrhenius equation: k = ν e−β�G‡

,
where ν is a frequency pre-factor, β = 1/kBT is the
inverse temperature and �G‡ is the free energy bar-
rier associated with the rate-determining step. The next
substantial development came with Eyring [2] in the
1930s, who assumed that the reaction is governed by a
rate determining step which corresponds to the break-
ing of a single quantum mechanical chemical bond. This
assumption allows explicit calculation of the frequency
pre-factor as ν = kBT/h, where h is the Planck con-
stant. Eyring’s equation has proved very successful in
describing the reactions of small molecules, but it is not
expected to apply to supramolecular processes involv-
ing macromolecules, as these processes require the rear-
rangement of large numbers of bonds rather than break-
ing of a single quantum mechanical mode of vibration
(Figure 1). Hence, the associated energy landscape in
this case involves many kinetic barriers along the reac-
tion coordinate. A more physically realistic model for
these systems is offered by Kramers rate theory [3–6]. In
this theory, reactions are described as diffusion processes
along a complex free energy landscape which is parame-
terised by just a few important coordinates. The reaction
rate corresponds to the inverse of the escape time, and it
is found that the reaction rate is of the Arrhenius–Eyring
type, whereby the pre-factor depends on key features of
the free energy landscape. In particular, it is found that
ν = ω1ω2/(2πγ ), where ω1 and ω2 denote the curva-
tures of the potential landscape at the bottom and the
top of the free energy barrier, respectively, and γ is the
friction coefficient.

Unravelling the molecular mechanisms of macro-
molecular diffusive processes thus requires solving
the inverse problem of characterising the free energy

landscape through measurements of the reaction rate.
Clearly, the reaction rate will contain the information
about the free energy barrier associated with the rate-
determining step, �G‡/kBT, via the Kramers equation.
Specifically, by measuring the temperature variation of
the reaction rate, the information about the free energy
barrier becomes directly accessible. A key question there-
fore is to establish which free energy barrier on a complex
multi-barrier landscape is rate-determining and is thus
read out by such a measurement.

To address these questions about the interpretation of
reaction ratemeasurements of supramolecular processes,
we review and apply Kramers reaction theory [3–5] to
model themolecularmechanisms of supramolecular pro-
cesses governed by diffusive dynamics and, conversely,
to establish which information about the free energy
landscape can be obtained from the temperature depen-
dence of the associated reaction rate. We find that only
one specific barrier from the multi-barrier landscape is
probed by suchmeasurements.We then apply this frame-
work to study the energetics of protein aggregation phe-
nomena, a biologically relevant example of multi-step
diffusive processes with implications in areas ranging
from biomedicine [7] to nanotechnology [8–11]. Specif-
ically, we apply Kramers theory in conjunction with
coarse-grained computer simulations and kinetic exper-
iments to determine the thermodynamic characteristics
of key steps involved in the aggregation of Alzheimer’s
Amyloid-β peptide into amyloid fibrils. These results
suggest a natural extension of the concept of a rate-
determining step in the context of protein aggregation
and establish a platform for probing the energetics of
complex macromolecular reactions in soft matter.

2. Kramers theory of diffusive reactions with
multiple kinetic barriers

Let us consider a diffusive reaction between well-defined
initial and final states, x0 and xe, taking place over a
one-dimensional potential free energy landscape, G(x),
with multiple barriers (Figure 1(d)). The following
Fokker–Planck equation then describes the time evolu-
tion of the probability p(x, t | x0) that, starting at x0, the
system has diffused to position x at time t [4]:

∂p(x, t | x0)
∂t

= −∂J
∂x

, (1)

where

J = − 1
γ

∂G(x)
∂x

p(x, t | x0) − D
∂p(x, t | x0)

∂x
. (2)

Here, γ denotes the frictional coefficient and D is the
diffusion coefficient. Note that γ and D are related to
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Figure 1. Examples of supramolecular kinetics in soft and biological matter. (a) Formation of protein complexes, (b) protein adsorption
and (c) amyloid fibril formation. (d) Supramolecular kinetics are characterised by a complex free energy landscape with multiple kinetic
barriers. A key question is to establish which features of the detailed free energy landscape are probed by measurements of the overall
reaction rate.

the thermal energy through the Einstein–Smoluchowski
relation, γD = kBT.

The key quantity of interest is the average first passage
time τ(x0 → xe), i.e. the time that it takes, on average, for
a system described by Equation (1) and starting at x0 to
reach xe. In fact, the inverse of the average first passage
time corresponds to the transition rate from x0 to xe [12]

k(x0 → xe) = 1
τ(x0 → xe)

, (3)

thus providing a link between free energy landscapes and
experimental reaction rate measurements. The average
first passage time τ(x0 → xe) is related to the probability
p(x, t | x0) through (see Supplementary Material)

τ(x0 → xe) =
∫ ∞

0
dt

∫ xe

−∞
dx p(x, t | x0). (4)

Integrating the Fokker–Planck Equation (1) using
Equation (4), we find that τ(x0 → xe) satisfies the

following differential equation (see SupplementaryMate-
rial):

− 1
γ

∂G(x)
∂x

∂τ(x → xe)
∂x

+ D
∂2τ(x → xe)

∂x2
= −1.

(5)
The solution to Equation (5) subject to the boundary
condition τ(xe → xe) = 0 is (see Supplementary Mate-
rial) [5]:

τ(x0 → xe) = βγ

∫ x0

xe
dy

∫ y

−∞
dz eβ[G(y)−G(z)]. (6)

In the limit when the relevant free energy barrier is much
bigger than thermal energy (β�G � 1), the integrals in
Equation (6) can be evaluated explicitly using the sad-
dle point approximation [13]. In particular, assuming
that the width does not vary significantly between the
multiple potential energy barriers, we need to maximise
the integrand over the integration range of Equation (6),
i.e. we need to find maxz≤y[G(y) − G(z)]. Let y = x∗
and z = x∗ denote the points in the range of integration
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of Equation (6) where the integrand in Equation (6) is
maximal. We find (see Supplementary Material):

τ(x0 → xe) � 2πγ

ω1ω2
eβ�G‡

, (7)

where

�G‡ = max
x0≤z≤y≤xe

[G(y) − G(z)] (8)

and ω1 and ω2 are the curvatures of the free energy
landscape at x∗ and x∗, respectively.

2.1. Identifying the rate-determining free energy
barrier from kinetic experiments

Using Equation (3) we find that the escape rate is in the
form of the Arrhenius–Eyring equation:

k(x0 → xe) � A e−β�G‡
, (9)

where A = ω1ω2/2πγ is a pre-factor, which depends on
the curvatures of the potential landscape at x∗ and x∗,
respectively. Note that, although the energy landscape
includes multiple intermediate kinetic barriers, only one
relevant free energy barrier �G‡ determines the escape
rate k(x0 → xe) and hence can be probed directly by
kinetic experiments. This relevant free energy barrier is
thus a natural generalisation of the concept of the rate-
determining step for small molecule reactions to com-
plex supramolecular processes. The rate-determining
free energy barrier is found using Equation (8) and cor-
responds to the largest possible free energy difference
between any local maximum and any local minimum
preceding it. Figure 2 illustrates this principle for a series
of three examples of energy landscapes.

As Equation (9) predicts that τ(x0 → xe) has an expo-
nential dependency on the height of the rate-determining
energy barrier, using the relationship �G‡ = �H‡ −
T�S‡, where �H‡ is the enthalpy of activation and �S‡

is the entropy of activation, and absorbing the entropy
contribution into the pre-factor, we find k(x0 → xe) �
e−β�H‡

. Hence, a plot of log k(x0 → xe) against β =
1/kBT is expected to yield a straight linewith the enthalpy
of activation corresponding to the rate-determining bar-
rier as the slope:

�H‡

kB
= −∂ log k(x0 → xe)

∂(1/T)
. (10)

This equation provides the key for interpreting reac-
tion rate measurements at varying temperature in terms
of the enthalpy of activation of the rate-determining
step. Note, however, that replacing �G‡ with �H‡ in
Equation (8) is wrong. This is because, the relevant acti-
vation energy barrier is determined by the free energy

landscape (Figure 2(a)), while the measured temperature
dependence of rate constants only reflects the enthalpic
contribution to this barrier, which need not correspond
to the highest enthalpy change (Figure 2(b)).

To test numerically the theoretical predictions of
Equations (8)–(10), we performed Monte Carlo (MC)
and Molecular Dynamics simulations [14] of diffusion
of a single particle on a series of examples of one-
dimensional potential energy landscapes (see Section 2
of Supplementary Material). We have also tested the the-
oretical predictions of Equations (8)–(10) by performing
an explicit analysis of the spectrum of the rate matrix
describing the transitions in the energy landscapes of
Figure 2(a) (see Section 3 of Supplementary Material).
This analysis establishes all the conditions under which
the energy landscapes of Figure 2(a) lead to an effec-
tive two-state kinetics and confirms the nature of the
rate-determining barrier. This discussion thus provides
an alternative view on the results from Kramers theory
and allows for an exhaustive analysis of the possible sce-
narios in the case of a three-state energy landscape. In
addition, this analysis illustrates the time-dependence of
the population in each of the states (see Section 3.2 of
Supplementary Material).

2.2. The frequency pre-factor

It is useful to conclude this section with a remark on
the exponential pre-factor. Unlike the enthalpy of activa-
tion,�H‡, the free energy of activation,�G‡, is crucially
coordinate dependent. This raises the question of the
appropriate choice for the reaction coordinate or, equiv-
alently, of an appropriate frequency pre-factor A. While
Kramers theory in principle provides an explicit for-
mula for this pre-factor via Equation (9), this expression
depends on parameters such as the curvature of the free
energy landscape at the top of the rate-determining bar-
rier, which are commonly inaccessible in experiments. A
possible strategy to overcome this limitation consists in
partitioning all of the missing information about diffu-
sion along the reaction coordinate into the free energy
barrier in the rate equation by re-writing the escape
rate as

k(x0 → xe) = Aphys e−β�G‡,phys
, (11)

where �G‡,phys = �G‡ + T�Si and �Si = kB log
(Aphys/A). Here, Aphys is a known frequency pre-factor
which can be constructed conveniently from the exper-
imentally accessible information about the reactive flux
towards the relevant barrier. Hence, �Si can be inter-
preted as an additional entropy term representing the
fact that we inevitably do not have complete information
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Figure 2. Relating temperature-dependent measurements of reaction rates to the rate-determining barrier along the complex free
energy landscape describing macromolecular processes. Equation (8) is used to determine the rate-determining barrier for three
examples (top, middle, bottom) of free energy (a) and enthalpy (b) landscapes.

about diffusion along the reaction coordinate. Note that
various choices of partitionings are equally possible.
Thus, the kinetic pre-factor, A, and the absolute value of

the relevant free energy barrier, �G‡, are not indepen-
dent quantities, and the latter is only meaningful if stated
together with the corresponding pre-factor.
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To illustrate these concepts with a practical exam-
ple, we consider the processes of primary and secondary
nucleation during protein aggregation (see Section 2 for
details on the definition of these processes). During pri-
mary nucleation, protein molecules come together spon-
taneously to form fibrillar aggregates. Hence, a choice of
the pre-factor, for which the flux towards the relevant
barrier can be determined experimentally in a straight-
forwardway, is the rate of diffusional arrival of the protein
building blocks into an effective reaction volume reff , as
Aphys = Dreff , where D is the diffusion coefficient [15].
In the case of secondary nucleation, it is known that fib-
ril nucleation involves the adsorption of monomers onto
the surface of existing fibrils. Thus, in addition to the
diffusional arrival of the protein building blocks, the pre-
factor Aphys in this case would take into account also the
kinetics of protein adsorption onto the fibril surface. This
requires the experimental determination of the probabil-
ity per unit time that a protein subunit is added to a fibril,
which could be achieved, for instance, by measuring the
fibril surface coverage as a function of the bulk pro-
tein concentration [16]. Note that, depending onwhether
the kinetics of adsorption is taken into account into the
pre-factor for secondary nucleation or not, the resulting
value for the rate-determining free energy barrier of sec-
ondary nucleation will be different. This highlights that
the observed value of the rate-determining free energy
barrier is crucially linked to the experimental knowledge
about the system. This is in contrast to the enthalpy of
activation, which is independent of the choice of reaction
coordinate and thus represents a highly robust readout
of the key characteristics of the underlying free energy
landscape.

3. Application to protein aggregation

In the following, we demonstrate how Kramers rate the-
ory discussed above can be used to study complex multi-
molecular reactions governed by the diffusive dynamics
and, in this manner, extract energetic information about
some of its constituent microscopic steps. In particular,
we shall focus on protein aggregation kinetics into amy-
loid fibrils, a process which is attracting great interest due
to its connectionwith over 50medical conditions, includ-
ing Alzheimer’s and Parkinson’s diseases [7,17–19].

Amyloid fibril formation is a process in which soluble
proteins spontaneously aggregate into fibrils of a cross-β
structure, enriched in β-sheet content [20]. This is a com-
plex phenomenon that typically involves the concomi-
tant action of multiple molecular mechanisms. Recent
advances in the available experimental techniques for
measuring aggregation kinetics coupled to mathematical
analysis of the underlying kinetic equations have allowed

the identification of these mechanisms at a microscopic
level [21–23]. In the case of the aggregation of Aβ42
(the 42-residue form of the amyloid-β peptide), a pro-
cess that is intimately linked to Alzheimer’s disease [24],
the fundamental steps that underlie amyloid fibril for-
mation involve an initial primary nucleation step, where
monomeric proteins spontaneously come together to
form new fibrils, coupled to filament elongation. In addi-
tion, the aggregation process is accelerated by the fact that
fibrils are able to generate copies of themselves through
surface catalysis [25,26], a process known as secondary
nucleation [27].

Despite the fact that the molecular steps of Aβ42 amy-
loid formation have been identified, themolecular mech-
anisms that underlie them have remained challenging
to understand [28–30]. Here, we use Kramers theory to
study the free energy landscape of two key steps in the
formation of Aβ42 amyloid fibrils, namely primary and
secondary nucleation. We use a coarse-grained model
(Figure 3) which can capture the diffusive motion of pro-
teins on a multi-barrier energy landscape determined by
the relevant effective intermolecular interactions, such
as hydrophobic forces, hydrogen bonding and screened
electrostatic interactions. Our model retains only crucial
molecular ingredients needed to reproduce the aggre-
gation behaviour at experimentally relevant scales. The
main advantage of this coarse-grained computer simu-
lation approach is that the measurements from simula-
tions can be validated directly against bulk experimental
measurements [16], as we also demonstrate here.

In the case of primary nucleation, the free energy land-
scape along the reaction coordinate in ourmodel involves
an initial stepwherebymonomeric proteins associate, fol-
lowed by a conformational conversion of proteins from
their native soluble states into a β-sheet prone state, and
finally the association of the latter state in a β-sheet
rich nucleus, which then rapidly grows into an amy-
loid fibril (Figure 3). Secondary nucleation involves the
adsorption of monomers onto the surface of an exist-
ing fibril and a subsequent surface-catalysed confor-
mational conversion step. This step leads to aggregate
detachment and its conversion into the β-sheet nucleus,
which then elongates into a fibril (Figure 3). In both
scenarios, we measure the temperature dependence of
the overall rates of primary and secondary nucleation
and show that, despite the complexity of the underly-
ing processes, these temperature-dependent kineticmea-
surements probe only one relevant barrier along the
free energy landscape. We then compare our simula-
tion results to the equivalent experimental results on
the temperature dependence of primary and secondary
nucleation during the formation of Aβ42 amyloid fibrils.
Just like predicted by Equations (9) and (10), we show
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Figure 3. Coarse-grainedmodel for amyloid aggregation. (a) Monomers can exist in two states – the soluble state that forms oligomers
and a β-sheet prone state that forms fibrils. When bound to a fibril, monomers can also convert into an intermediate state, which
binds stronger to its own kind than to the fibril and hence self-associates into oligomers that detach from the fibril surface. (b) Pri-
mary nucleation, over the concentration and temperature regime discussed in this paper (c= 1.8mM, 1.25 < kBT < 10), proceeds
through protein dimerisation and conversion into a β-sheet dimer which continues growing into a fully elongated fibril. Secondary
nucleation (c= 0.15mM, 0.92 < kBT < 1.03) proceeds by monomer attachment and oligomerisation on the fibril surface, conversion
into an intermediate state, oligomer detachment and finally conversion into the β-sheet rich nucleus in solution.

that the kinetic measurements do not probe the high-
est enthalpic barrier on the energy landscape, but rather
the enthalpic barrier which contributes to the highest free
energy barrier on the landscape.

3.1. Computermodel

We used a coarse-grained MC model for primary and
secondary amyloid nucleation developed in [16,32].
Although minimal in its nature, this model captures
many complex features of the aggregation processes. In
particular, the model accounts for the fact that an amy-
loidogenic protein needs to exist in at least two different
states: a state in solution (‘s’) that can occasionally aggre-
gate into small oligomers and a higher free energy state
that can form amyloid fibrils (‘β ’) [32,33] (Figure 3). To
capture secondary nucleation, a soluble monomer can
adsorb onto the fibril surface and can convert into an
additional (intermediate ‘i’) state that lies in between
the ‘s’ and ‘β ’ states; the existence of this intermediate
state reflects the catalytic role of the fibril in assisting
the conformational conversion from the soluble into the
fibril-forming state. In this model, a protein is described
by a single rod-like particle, decorated with a patch
that controls protein aggregation into either non-β-sheet
oligomers or fibrils. A protein in an ‘s’ or ‘i’ state inter-
acts with its own kind via its attractive tip, which mim-
ics non-specific inter-protein interactions. The fibril-
forming state interacts with its own kind via an attractive
side-patch, which models directional interactions, such
as hydrogen bonding, and drives the formation of fibril-
lar aggregates. The interaction between two proteins in
the fibril-forming states is by far the strongest interaction

in the system, and once formed, the fibrils are effectively
irreversible. Monomer adsorption onto the fibril is ener-
getically favourable; adsorbedmonomers are then able to
interact on the fibril surface to form oligomers. Since the
protein in the intermediate state interacts with the fib-
ril only weakly, oligomer detachment is favourable only
for sufficiently large oligomers. This is because the loss of
monomer-fibril interactions is overcome by the energetic
gain associated with the interaction between proteins in
the oligomer-forming state. Every conversion event from
the soluble state into the fibril-forming state is penalised
by a change in the excess chemical potential,�μs−β . This
property is needed to reflect the fact that amyloidogenic
proteins, such as Aβ, are typically not found in the β-
sheet prone conformation in solution [34,35]. As in our
previous work [16], the conversion from the soluble to
the intermediate state on the fibril surface, as well as the
conversion from the oligomer-forming state to the fibril-
forming state was penalised by 0.5�μs−β . Further details
on the parameters used in this work are given in the Sup-
plementary Information. To calculate the nucleation rate,
we measure the mean first passage time for the particles
to diffuse along the energy landscape and create a β-sheet
enriched nucleus. The rate of nucleation is then defined
as the inverse of such an average first passage time for
nucleation [16,36].

3.2. Temperature dependence of primary
nucleation

For primary nucleation to take place, proteins need
to meet in solution and then convert into the β-sheet
prone conformations. The converted monomers interact
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strongly and form a β-sheet nucleus which is able to grow
into a mature fibril (Figure 3). This process can involve
the formation of long-lived pre-nucleation clusters. Such
clusters provide a suitable environment for the confor-
mational conversion to take place and hence significantly
enhance the rate of nucleation [32,36]. We simulated
amyloid nucleation in solution for a range of different
temperatures. Interestingly, we find a non-monotonic
dependence of the primary nucleation rate on temper-
ature (Figure S5(a)): at low temperatures the nucleation
rate decreases with temperature, while at high temper-
atures the rate increases as the temperature increases.
This result can be understood as follows. We find that
monomers oligomerise substantially at low temperatures
(Figure S5(b)), which increases the rate of fibril nucle-
ation. As the temperature is increased, the pre-nucleation
oligomers become smaller and smaller, which in turn
decreases the nucleation rate. However, as the tempera-
ture is increased further, the high-energy β-sheet prone
state becomes more easily accessible by thermal fluctua-
tions, and the conversion rate is enhanced, resulting in an
increased overall nucleation rate.

Recently, the temperature dependence of the rate of
primary nucleation of the Aβ peptide has been probed
in experiments [31], and it has been found that, in the
experimentally relevant regime of temperatures for this
peptide, the nucleation rate is significantly increased at
higher temperatures. Hence, we focus on this regime in
our analysis. In this temperature regime, the nucleation
process starts by two proteins meeting in solution and
forming a dimer (denoted as ‘2s’ in Figure 4). This ‘2s’
dimer usually falls apart many times and reforms else-
where in solution before one protein in the dimer suc-
cessfully converts into the β-sheet prone state (‘1s1β ’ in
Figure 4). Such a ‘1s1β ’ dimer also has a high probability
of dissolving back into the solution, before a successful
conversion into a β-sheet nucleus (‘2β’) occurs. However,
if the dimer manages to convert successfully into the ‘2β’
state, then it will quickly grow into a fibril. Indeed, by
analysing the simulation trajectories, we find that the ‘2β’
nucleus, made of two proteins in the β-sheet prone state,
always grows further, without ever dissolving back into
the solution. In our simulations, we also detect a signifi-
cant amount of dimers containing two proteins in the sol-
uble states, while the least probable species in the system
is a dimer that contains exactly one protein in the solu-
ble state and one protein in the β-sheet prone state. Thus,
we assign the highest free energy barrier in the system to
precisely this rare species, as shown in Figure 4. Since in
our simulations we know all the interactions in the sys-
tem, we can explicitly calculate the enthalpic barrier that
corresponds to this ‘rate-determining’ free energy bar-
rier in the simulations. In particular, a measurement of

the relevant enthalpic barrier from the simulation tra-
jectories yields the value of 14.5kBT. This result agrees
remarkably well with the variation of the reaction rate
with temperature in our simulations that yields a value
of 14.8kBT, just like predicted by the reaction rate theory
in Equations (9)–(10).

3.3. Temperature dependence of secondary
nucleation

We repeated an analogous set of simulations and rate
measurements for the temperature dependence of sec-
ondary nucleation. In contrast to primary nucleation,
secondary nucleation occurs via protein adsorption and
oligomerisation on the fibril surface. These steps are
followed by a conformational conversion into an inter-
mediate state, the detachment of the oligomer from the
fibril surface and finally the conversion of the detached
oligomer into a β-sheet nucleus that further grows into
a fibril (Figure 3). From our simulations, at the partic-
ular protein concentration we considered, we find that
the rarest species in the system is a fibril-bound oligomer
which contains four proteins in the ‘s’ state (‘4s’ in
Figure 4). If such a ‘4s’ oligomer survives, it will grow
into a hexamer (‘6s’ in Figure 4), which then partially
converts into an intermediate state (‘4s2i’ in Figure 4),
detaches from the fibril surface (‘6i’) and finally con-
verts into a β-sheet nucleus (‘2β+’ in Figure 4). Our
rate measurements show that secondary nucleation is
strongly hampered at high temperatures. This is exactly
the opposite trend compared to the one we observed for
primary nucleation. The reason for this difference is that,
unlike in primary nucleation, the highest free energy bar-
rier for secondary nucleation corresponds to the protein
oligomerisation step on the fibril surface, rather than the
oligomer conversion step. At higher temperatures, fewer
monomers are adsorbed onto the fibril surface; this leads
to a decreased tendency to undergo protein oligomeri-
sation and, hence, to a slower overall nucleation rate. It
is important to note that secondary nucleation in our
simulations occurs only in a very narrow temperature
regime. As previously reported in experiments [26,37]
and simulations [16], secondary nucleation is extremely
sensitive to environmental conditions. The exact temper-
ature range where secondary nucleation occurs in our
simulations is determined by the choice of all the interac-
tions in the system, which is somewhat arbitrary in such
a highly coarse-grainedmodel. Hence, one should not try
to compare the exact values of the rates or temperatures
between primary and secondary nucleation in simula-
tions and experiments. Instead, one should focus on simi-
larities and differences between the trends and qualitative
behaviour observed in simulations and experiments.
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Figure 4. Determining the rate-determining step for primary and secondary nucleation in amyloid fibril formation. Free energy and
enthalpy profiles underlying primary (top) and secondary (bottom) nucleation in our computer model and in experiments, and the
variation of the respective nucleation rates with temperature. Top panel: The highest free energy barrier for primary nucleation in
the simulations considered here corresponds to the conversion of a single monomer within the nucleus to the β-sheet configuration
(left). The temperature dependence of the nucleation rate is a readout of the energetic penalty for this conversion event, which, in our
model, is imposed by �μs−β (middle). The experimental measurements of the temperature-variation of the primary nucleation rate
for Aβ42 aggregation show qualitatively the same trend as in our simulations (right). In particular, the enthalpy of activation is positive,
�H‡

exp = 58.1kBT . Bottom panel: The highest free energy barrier for secondary nucleation in this model corresponds to the adsorption
ofmonomers onto the fibril surface (left). The variation of the secondary nucleation rate with temperature thus probes the enthalpic bar-
rier for protein adsorption, which is in this case negative (middle). The experimental measurements of the temperature variation of the
rate of secondary nucleation for Aβ42 aggregation exhibit qualitatively the same trend as in our simulations [31] (right). Specifically, the
secondary nucleation rate is decreased at high temperatures, a fact which is reflected in a negative enthalpy of activation for secondary
nucleation,�H‡

exp = −4.4kBT .

An example demonstrating the power offered by the
comparison between simulations and experiments is pro-
vided in Figure 5. Figure 5(a) shows the temperature
dependence of the surface coverage, while Figure 5(b)
plots the dependence of the rate of secondary nucleation
on the fibril surface coverage. The two dependencies
(Figure 5(a,b)) combined give rise to the temperature-
dependent behaviour of the secondary nucleation reac-
tion rate observed in Figure 4. From the measurements
of the interactions in our model (Figure 4), we find
that the enthalpic barrier corresponding to the forma-
tion of the ‘critical’ oligomer is actually negative, and
again, this result aligns very well with the variation of the
nucleation rate with temperature. The same trends have

recently been reported experimentally for the kinetics of
secondary nucleation of Aβ42 [31]. In particular, sec-
ondary nucleation of Aβ42 has been observed to be
retarded at high temperatures and appeared to have a
negative enthalpic barrier (Figure 4). In this case, the
experimentally observed behaviour of the secondary
nucleation rate is also caused by the fact that protein-
fibril adsorption is reduced at higher temperatures [31]
(Figure 5(c)). Secondary amyloid nucleation thus is a
clear example of a process in which the kinetic mea-
surements do not read out the highest enthalpic barrier
along the energy landscape. The enthalpic barrier probed
by secondary nucleation is in fact highly negative, both
in simulations and experiments, and contributes to the
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Figure 5. Temperature dependence of secondary nucleation. (a) Computer simulations show that the amount of monomers adsorbed
on fibrils decreases with increasing temperature. (b) The rate of secondary nucleation in computer simulations depends linearly on the
fibril surface coverage, while the size of the nucleating oligomer remains unchanged (Inset). The combination of the dependence in (a)
and (b) results in the temperature dependence of secondary nucleation presented in Figure 4. (c) The temperature dependence of the
monomer-fibril binding constantmeasured for theAβpeptide shows the same trend as the temperature dependence of surface coverage
observed in simulations [31].

highest free energy barrier on the free energy landscape,
which is clearly dominated by the unfavourable entropic
contribution related to protein adsorption.

4. Conclusions

We have discussed a general framework, based on
Kramers reaction rate theory, for studying the tem-
perature dependence of complex supramolecular pro-
cesses with multiple barriers and wells. We find that
the enthalpic barrier probed in temperature-dependent
kineticmeasurements of reaction rates does not necessar-
ily correspond to the highest enthalpic barrier along the
reaction coordinate, but rather to the enthalpic barrier
corresponding to the highest relative free energy bar-
rier on the free energy landscape. We have then applied
Kramers theory to interpret in coarse-grained computer
simulations of the fundamental processes underlying the
formation of amyloid fibrils – primary and secondary
amyloid nucleation. For primary nucleation we find that
two regimes can exist for the rate of nucleation – a regime
in which the nucleation is faster at low temperatures, and
a regime in which nucleation is faster at high tempera-
tures. Guided by recent experimental results, we focus
on the latter regime, and find that protein conforma-
tional conversion, which is aided at high temperatures, is
the rate-determining step that drives primary nucleation
in this temperature range. Unlike primary nucleation,
we find that the relevant free energy barrier that deter-
mines the temperature dependence of the rate of sec-
ondary nucleation is the adsorption and oligomerisation
on the fibril surface, which is hampered at hightempera-
tures. The difference in the respective rate-determining
steps results in fundamentally distinct thermodynamic

signatures for primary and secondary nucleation, thus
highlighting the power of probing free energy land-
scapes for understanding microscopic processes under-
lying complex multi-molecular processes.
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