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Abstract
Nucleation processes are at the heart of a large number of phenomena, from cloud formation to

protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation

of filamentous protein self-assembly, a process that has broad implications in many research areas

ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has

received much attention in recent years with many theoretical and experimental studies focussing on

the underlying physical principles. In this paper we make a step forward in this direction and explore

the early time behaviour of filamentous protein growth in the context of nucleation theory. We

first provide an overview of the thermodynamics and kinetics of spontaneous nucleation in protein

filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we

review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly

related to the physical size of the critical nucleus. We then focus on the increasingly prominent case

of filament nucleation that includes a conformational conversion of the nucleating building-block

as an additional slow step in the nucleation process. Using computer simulations, we study the

concentration dependence of the nucleation rate and we find that, under these circumstances, the

reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to

the overall physical size of the nucleating aggregates but rather corresponds to the sub-aggregate

size that directly participates in the conformational conversion. Our results thus provide a novel

interpretation of the kinetic descriptors of protein filament formation, including the reaction order of

the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical

descriptions of protein aggregation.
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I. INTRODUCTION

Nucleation is the initial step in the formation of a new ordered structure through self-

organization. It is characterized by the presence of a free energy barrier to form the small-

est growth-competent unit of the new structure. Many phenomena in nature, science and

engineering are nucleated processes. Familiar examples from everyday life include cloud for-

mation, ice crystallization, the boiling of water, or the formation of bubbles in a champagne

glass.

Besides these everyday systems, nucleation processes are also of fundamental importance

to current research. A particularly intriguing example in this context is the formation of

protein filaments, a fundamental form of biological self-assembly with important implica-

tions in areas ranging from medicine to materials science. Biofilaments of actin and tubulin

for instance underlie key events in cellular life, such as providing the rigidity of the cellular

cytoskeleton or participating in cell motility and cell division.1–7 On the other side, aberrant

filamentous protein aggregation is associated with over 50 increasingly prevalent human dis-

orders, such as Alzheimer’s, Parkinson’s diseases and type II diabetes.8–14 These pathologies

are intimately associated with the formation and deposition in the brain or other organs

of fibrillar protein aggregates, commonly known as amyloids, which are the result of the

aggregation of normally soluble and functional proteins into elongated fibrillar structures

characterized by their β-sheet rich structure. Amyloids, however, are not only associated

with disease, as it was initially believed, but have been increasingly found to serve also many

functional roles within living organisms15 and this natural use of the amyloid state of pro-

teins and peptides for functional purposes has inspired many applications of these structures

as materials for nanotechnology.16–20

The formation of protein filaments has been established to be a nucleated polymeriza-

tion process where a slow spontaneous (or primary) fibril nucleation step is followed by

rapid growth through filament elongation6,23,24,26,35,38–47,49–52,59,61,84 and, in certain cases, self-

replication through secondary pathways.21–25,93 When the random formation of the smallest

growth-competent aggregates (nuclei) occurs directly from solution, without the participa-

tion of surfaces or nucleation seeds21–25,93, we denote it as “spontaneous”. A particularly use-

ful approach to understand the way in which soluble proteins are converted into their fibrillar

counterparts through spontaneous nucleation is represented by kinetic models of filamentous
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growth6,21,26–29. These kinetic models allow the underlying molecular-level mechanisms of

fibril formation to be connected with in vitro experimental measurements of the aggregate

mass concentration e.g. by fluorescence microscopy or related techniques.86 In these models,

the spontaneous fibril nucleation step is commonly described as an nc-th order reaction with

respect to the free monomer concentration c with rate

r = knc
nc , (1)

where kn is the rate constant for spontaneous nucleation and nc is an effective reaction order

of spontaneous nucleation with respect to c. Because nucleation is slow compared to growth,

the value of nc can be obtained experimentally from the concentration dependence of the

half-polymerization time t1/2 (defined as the time at which half of the monomers mass is

sequestered in aggregates), as the slope of this relationship in a double logarithmic plot gives

the so called scaling exponent γ defined by:

t1/2 = A cγ, γ = −nc/2. (2)

A key question, in the field, is how to relate these kinetic descriptors, including the reaction

order nc and the scaling exponent γ, with the microscopic characteristics of the underlying

nucleation step, such as the physical size of the nucleating aggregates, thus providing impor-

tant insights into the nature of the nucleation process. This problem has already received

significant attention in the protein aggregation literature.? (cite all papers that speak about

nucleation...if we order them well we should be able to have them all next to each other...)

In this paper, we make a step forward in this direction. We start by providing a brief

overview of the simplest case of fibril nucleation by direct polymerization of monomers, a

situation that has been considered extensively in the literature (cite all the papers of the first

part), incorporating the published theories and quantitative experiments. We then consider

the increasingly evident process of protein nucleation which includes an additional confor-

mational change in the nucleating protein aggregate, giving rise to multi-step nucleation

processes via small oligomers. We study the kinetics of such a process using coarse-grained

computer simulations, and provide a novel interpretation of the related kinetic parameters

that are commonly measured in experiments. In particular, we investigate the meaning of

the reaction order nc when proteins undergo a conformational change during nucleation, and

find that nc directly corresponds to the portion of the oligomer size that directly participates

in the conversion step.
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II. KINETICS OF SPONTANEOUS FIBRIL NUCLEATION WITH ONE DEGREE

OF FREEDOM

We start our discussion by reviewing the simplest model of fibril nucleation, in which

aggregates of different sizes but same structure are formed by direct polymerization of protein

monomers. We demonstrate that this model gives rise to spontaneous nucleation if the

cluster free energy function has a maximum as a function of cluster size. Under these

circumstances, it is found that, independently of the specific form of the cluster free energy

function, the reaction order of spontaneous nucleation nc is always linked to the number of

monomers that compose the fibril nucleus.89 The simplicity of this model arises from the fact

that the aggregate size is the only degree of freedom in the system; in Section III we relax

this assumption by considering the effect of other potentially important degrees of freedom,

such as the internal structure of clusters.

A. Direct polymerization models of spontaneous fibril nucleation and the nucle-

ation theorem

To see how spontaneous nucleation emerges from a direct polymerization model, we con-

sider the following master equation describing the time evolution of the concentration f(t, N)

of aggregates of N monomers under the action of elongation and dissociation processes:53

∂f(t, N)

∂t
= c kon(N − 1)f(t, N − 1)− c kon(N)f(t, N) (3)

+ koff(N + 1)f(t, N + 1)− koff(N)f(t, N),

where c is the free monomer concentration, kon(N) and koff(N) are the (size-dependent)

rate constants for the addition and removal of monomers. These rate constants are linked

together by the detailed balance condition

c kon(N − 1)feq(N − 1) = koff(N)feq(N) (4)

where feq(N) is the cluster size distribution function at equilibrium. As detailed in Refs.56,57,

Eqs. (3) can be conveniently mapped onto a one-dimensional diffusion equation in a potential

landscape by assuming that the size distribution f(t, N) varies sufficiently smoothly with N
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so that the continuum limit approximation applies:

∂f(t, N)

∂t
= konc

∂

∂N

[
∂f(t, N)

∂N
+ β

∂Φ(N)

∂N
f(t, N)

]
, (5)

where β = 1/(kT ) denotes the inverse temperature (k is the Boltzmann constant) and we

have introduced the cluster free energy function Φ(N) defined by the relationship

feq(N)

c
= e−βΦ(N). (6)

If the free energy function Φ(N) has a maximum at some value N∗, corresponding to the

critical nucleus size, then the rate of nucleation can be obtained from Eq. (5) using the

saddle point approximation:58

r ∼ konc

(
Φ′′(N∗)

2πβ−1

)
e−βΦ(N∗). (7)

Thus, the master equation (3) of direct polymerization yields spontaneous nucleation. An

important point to recognize here is that Eq. (7) is valid for arbitrary cluster free energy

functions, so that depending on the specific form of Φ(N) several models of spontaneous

nucleation can be formulated. Classical nucleation theory,36,37 for instance, describes clusters

of fractal dimension d as a compact object with associated volume and surface energy terms:

Φ(N) = aσN
d−1
d −N∆µ, (d > 1) (8)

where ∆µ = β−1 log(c/cs) is the supersaturation, cs the saturation concentration, σ the

surface tension (energy per unit surface) of the interface between the aggregate and the

surrounding solvent and a is a geometrical prefactor. The balance between unfavourable

entropy contribution from the motion of free monomers and the energy from the bonds

between monomers creates a barrier. As N increases, more bonds are created between

monomers eventually overcoming the unfavourable entropy contributions that make small

cluster unstable. The nucleus is the rate limiting step and corresponds to the point at which

the free energy Φ(N) peaks (Fig.1(b)), and according to Eq. (7) the rate of nucleation is

given by:

r ∼ c e−
β∆µN∗
d−1 , N∗ =

(
(d− 1)aσ

d ∆µ

)d
. (9)

It is easy to verify that from Eq. (9) the nucleus size N∗ satisfies the relationship:

N∗ =
d log(r)

d log(c)
− 1 = nc − 1, (10)
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where the factor −1 comes from the concentration dependence of the prefactor in Eq. (7).

Equation (10) is a remarkable result: it states that the nucleus size can be obtained from the

slope of a double logarithmic plot of the nucleation rate r against the monomer concentration

c. Moreover, Eq. (10) provides a direct relationship linking the physical size of nuclei to

the experimentally accessible reaction order nc of spontaneous nucleation. Interestingly,

Eq. (10), which was derived here for the specific cluster free energy function of Eq. (8),

turns out to be a far more general result known as the nucleation theorem.89 This theorem

states that Eq. (10) is valid for arbitrary cluster free energy functions of the form Φ(N) =

F (N) − N∆µ, so that in a nucleating system where the aggregate number is the only

relevant degree of freedom, the kinetic parameters nc and γ can always be linked directly

to the physical size of the nuclei. As a final note, we remind here that, in the context

of classical nucleation theory, the surface energy term F (N) of one dimensional clusters

(d = 1) is independent of N so that the cluster free energy function Φ(N) has no maximum

(Fig. 1(b)). Hence, direct polymerization in 1D is a downhill process, where every aggregate

is more stable that the previous ones; there is no classical nucleation in a truly 1D system.37

Direct polymerization models have been used widely in the protein aggregation literature

to describe spontaneous fibril nucleation. Important examples include classical nucleation

theory descriptions of amyloid as elongated 2D crystals.65–67 By considering prismatic ag-

gregates of fixed width but variable length and thickness build up by successively layered

β-sheets, expressions for the nucleation rate, nucleus size and nucleation work have been

obtained. In accordance with the nucleation theorem Eq. (10), these theories predict the

existence of a well-defined nucleus size which can be obtained from a log-log plot of the nu-

cleation rate against monomer concentration. Recent simulation and theoretical studies of

fibril nucleation have highlighted that introducing an interaction anisotropy in these models

results in a non-standard nucleation mechanism where the concept of a well-defined nucleus

size breaks and nuclei with varying size are observed instead.71–73

B. Pre-equilibrium models of spontaneous fibril nucleation

Worth mentioning at this point are pre-equilibrium models of fibril nucleation, which

effectively correspond to direct polymerization mechanisms. These models are characterized

by two main assumptions. The first assumption is that clusters do not possess internal
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FIG. 1. (a) One step nucleation is characterised by a single slow coordinate that corresponds to

the cluster size. (b) Cluster free energy of classical nucleation theory for a 3D spherical cluster

and for a 1D cluster. Note that in 1D there is no free energy barrier. (c) Multistep nucleation is

characterised by additional slow coordinates. In this example the additional slow coordinate is the

structural change. The dashed line indicates a possible nucleation pathway.

structure, so that the nucleus can be considered as a small piece of a long aggregate and the

cluster size is the only relevant degree of freedom in the system. The second assumption is

that the nuclei are in equilibrium with the soluble monomer, so that their concentration can

be obtained by equating the respective chemical potentials and the original kinetic problem

is now transformed into an equilibrium one. In these models the rate of nucleation can be

summarized as:6,7,23,26,27,35,59–63

r = A cnc . (11)

The exact connection between the exponent nc and the nucleus size is model dependent.

For example, some authors23,35,61–63 describe the rate of nucleation as the rate at which

nuclei elongate r = k+c [N∗], where k+ is the elongation rate constant and [N∗] is the

concentration of nuclei. The assumption that nuclei are in equilibrium with the monomers

results in [N∗] = Knc
N∗ , where Kn is the equilibrium constant for the nucleus-monomer

equilibrium. Combining these expressions yields r = k+Knc
N∗+1 and we find the following
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relationship between the reaction order nc of spontaneous nucleation and N∗89

N∗ =
d log(r)

d log(c)
− 1 = nc − 1. (12)

Similar arguments have been employed by other authors that yield different expressions,

including N∗ = nc + 1,59 or N∗ = nc.6,7,26,27,60 In either case, the value of the nucleus size

is directly related to the slope of a plot of log(r) against the logarithm of the monomer

concentration, and thus the physical size of nuclei can in principle be accessed from kinetic

measurements. Several variations of these pre-equilibrium models of nucleation have also

been formulated, for instance by considering different addition rates for monomer above and

below N∗,61,62,74–76 by assuming that the nucleus is formed through successive associations

of small oligomers77–80 or by including reversible association steps for aggregate sizes below

N∗ and considering only irreversible polymerization for N > N∗.78–81

III. KINETICS OF SPONTANEOUS FIBRIL NUCLEATION WITH MULTIPLE

DEGREES OF FREEDOM

So far, we have considered the situation when the relevant degree of freedom of the nu-

cleating system is the physical size of aggregates. Under these circumstances, the nucleation

theorem89 provides a direct relationship between the nucleus size and the concentration

dependence of the nucleation rate. This result offers a powerful strategy for accessing key

information about the underlying nucleation step from experimental measurements of aggre-

gation kinetics. We now make a step forward and consider the more complicated situation

when the nucleation process is controlled by additional relevant degrees of freedom, such as

the internal structure of clusters. A prominent example of such a situation is realized when

the aggregating species change their shape or conformation during nucleation. In fact, when

considering the assembly of soft species, such as proteins, one needs to take into account

the fact that the species within the final aggregate might be in a significantly different state

from their counterparts in solution. In particular, the protein conformation and shape might

be substantially altered in the final aggregate. This situation can be viewed as a nucleation

process that is governed by multiple degrees of freedom, in addition to the cluster size, as

sketched in Fig. 1(c). An important realization of this scenario is the aggregation of amyloid

fibrils, where proteins acquire a β-sheet conformation within the fibril, which is typically
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very different from their native conformations in solution. A large number of structurally

unrelated proteins form this type of fibrils, and amyloid fibril formation is regularly ac-

companied by a marked change in protein conformation. As demonstrated below, in this

scenario we do not find a relationship between nucleus size N∗ and the reaction order nc,

but rather find that for a given value of nc the overall size of the nucleating oligomers can

change. Interestingly, however, we find that a modified nucleation theorem connects nc to

the sub-oligomer size within which the conformational change takes place.

Amyloidogenic proteins can be characterised according to their propensity to acquire the

β-sheet conformation110–113, which controls the rate and pathways of amyloid fibril nucleation
95–101. For proteins with low β-propensity, the conformational change from the native into

the β-sheet form is slow and energetically unfavourable, and the fraction of the proteins in

the β-sheet conformation in the protein aggregate acts as a second slow degree of freedom

in amyloid fibril formation, in addition to the aggregation number.

A number of experimental studies have reported the existence of non-β-sheet clusters

during amyloid formation102–109, and have suggested a multi-step nucleation mechanisms,

where fibril nucleation takes place via disordered prefibrillar clusters.40,43,82–84,86 This nucle-

ation scenario, also called a nucleated conformational conversion or a two-step nucleation,

has also been in focus of several theoretical studies68–70,85,92,95,96,99.

A. Computer simulations of amyloid nucleation

As a quantitative understanding of aggregation processes with more than one slow de-

gree of freedom is still presently lacking, it is beneficial to obtain interpretation of its kinetic

descriptors. Coarse-grained computer simulations can be of great help in this case. Here,

we use coarse-grained Monte Carlo simulations to study the kinetics and thermodynamics

of nucleation of amyloid-like fibrils, for proteins with a range of β-propensities, attempt-

ing to rationalise experimentally measurable kinetic parameters in terms of the underlying

microscopic steps. Amyloid fibril formation is known to involve pre-nucleation disordered

oligomers, which do not posses much β-sheet content typical for fibrils, hence the oligomer

aggregation number emerges as one slow degree of freedom, while the β-sheet content, typ-

ical for fibrils, emerges as the second one. Our model, although presented in the context

of amyloid nucleation, is generic and can be applied to formation of any protein filaments
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which involve a conformational change.

We employ a minimal computational model that reproduces fibril nucleation, as described

in our previous work92,93. Briefly, the model accounts for the fact that amyloidogenic pep-

tides and proteins exist in minimally two states: a state in solution (denoted “s”) that can

form disordered oligomers, and a higher free-energy state that can form the β-sheet enriched

fibrils (denoted “β”)92,94. The “s” state is modelled as a hard spherocylinder with an attrac-

tive patch at the tip, which accounts for non-specific interprotein interactions, and drives

the formation of small disordered oligomers, as depicted in Fig. 2 (a) and (b). The strength

of the attraction between two “s” proteins is characterised with a parameter εss = 5.5kT .

The fibril forming configuration is described as a hard spherocylinder with an attractive

side patch, which captures the interactions between the β-sheet prone state, such as the

hydrogen-bonding and hydrophobic interactions, and leads to the fibrillar aggregates (Fig.

2 (a) and (b)). The magnitude of this attraction is considerably stronger than between the

soluble state, with εββ = 30kT . The “s” -“β” interaction was set to εsβ = εss+1kT , as in our

previous work92. Throughout the text k denotes Boltzmann’s constant and T the tempera-

ture. We start our simulations with 600 proteins randomly distributed in a periodic cubic

box, with all proteins in the “s” state. A protein is randomly chosen to be swapped between

the “s” and “β” state with a probability Pswap. The “s” → “β” swap is thermodynamically

unfavourable, and is penalised with an excess chemical potential of ∆µsβ, to reflect the loss

of the conformational entropy of the β-hairpin compared to the form in solution. This value

of ∆µsβ quantifies the protein’s β-sheet propensity, and controls the additional slow degree

of freedom. The degree of oligomerisation of the proteins in the “s”-state can be controlled

via the protein concentration c, as probed in the text. A protein belongs to an oligomer if

it is within the attraction range from at least one other protein in the oligomer, where the

range of attraction specified in our earlier work92.

To obtain information about the kinetics of fibril nucleation, we use the mean first passage

time as the proxy for nucleation rate, and calculate the rate of primary nucleation as the

inverse of the average lag time for nucleation93. The lag time is defined as the number

of Monte Carlo steps needed for the first oligomer consisting of at least two β-proteins to

appear in the simulation, since the appearance of such a nucleus always leads to further

fibril growth in our simulations. We however note that such an oligomer can contain any

composition of the proteins in the “s” state and can be of any overall size.. The average lag
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FIG. 2. The Monte Carlo model. (a) The protein can switch between two states: the soluble state,

“s”, that is lower in energy, interacts weakly with its own kind, and forms disordered oligomers;

and the β-sheet prone state,“β”, which is higher in energy, but interacts stronger with its own type

than the soluble state, forming fibrils. Attractive patches are coloured in blue and red for the “s”

and “β” state respectively. (b) Aggregates of the two possible states: disordered oligomer (left

panel) and fibril (right panel). (c) At low protein concentrations nucleation proceeds via oligomers.

Illustration of an oligomer of the size N = 6, where the nucleation takes place when two proteins

simultaneously convert into the β-prone state, which triggers the nucleus growth into a long fibril.

time is then calculated from at least 6 repetitions of the same system with different random

seeds, and is expressed in the units of 108 Monte Carlo (MC) steps.

B. Kinetics of amyloid nucleation computed in simulations

At low protein concentrations, which is the regime we focus on in this paper, nucleation

proceeds via oligomers, as depicted in Fig. 2(c). Starting from an equilibrated population of

soluble proteins and their oligomers, we have calculated the rate of fibril nucleation across

a large range of protein concentrations, as shown in Fig. 3(a), for the case of a protein
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with a low propensity for the β-state (∆µsβ = 20kT ) and the protein with a relatively high

β-propensity, ∆µsβ = 10kT . As expected, the rate of nucleation increases with the protein

concentration, and with the increase in the protein β-propensity. The scaling exponent, nc,

which relates the reaction order of the nucleation step with the monomer concentration is

given by the slope of the plot in Fig. 3(a), and is found to decrease with increasing β-

propensity.

What is the physical meaning of the scaling exponent nc? Its obvious characteristics is that

nc sharply decreases in the vicinity of the critical micelle concentration (cmc). This is the

concentration above which increasing the total protein concentration leaves the concentration

of monomers in solution unaffected (Fig. 3(b)), causing the weaker dependence of nucleation

the rate on the protein concentration. Since amyloidogenic proteins are typically at very

low concentrations in cells, as low as nanomolar, we focus on the meaning of the exponent

at low concentration, much before the cmc is reached. The measured scaling exponent at

low protein concentrations (Fig. 3(a)) is nc ≈ 4.5 and γ ≈ 2, for the protein with a low and

high β-propensity respectively.

In light of the various theories of nucleation, discussed in the Section II, where the scaling

of the nucleation rate is linked with the protein concentration raised to the critical nucleus

size (Eq.(12)), we measure the size (aggregation number) of the nucleating oligomer directly

in our simulations. The average aggregation number of the nucleating oligomer changes

between N∗ ≈ 2 − 12 across the concentration range for the low-β-propensity protein (red

circles in Fig. 3(c)), and between N∗ ≈ 2− 4 for the high-beta propensity one (blue crosses

in Fig. 3(d)). Clearly, the size of the nucleating oligomer increases with the increase in the

protein concentration, as predicted in our previous analysis of the free energy barriers for two-

step nucleation92. However, for the protein with low β-propensity, the size of the nucleating

oligomer does not correspond to the value of the reaction order, which is more prominent for

the protein with low β-propensity. Instead, we find that the reaction order corresponds to

the size of the part of the oligomer that directly participates in the conversion step, as shown

by the black filled circles in Fig. 3(c) for the low β-propensity protein, and the black squares

in Fig. 3(d) for the high β-propensity protein. In the latter case, conformational conversion

ceases to be a slow degree of freedom, and the situation form the classical nucleation is

recovered, where the reaction order corresponds to the oligomer size.

It is worth adding that in order to test for the presence of possible additional time-scales
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involved in our results, we repeated the rate measurements for a larger value of the “s” →

“β” conversion attempt, Pswap = 1 in our MC scheme. This choice would correspond to a

protein with a very fast conformational rearrangement. In this case, the reaction was overall

faster, but the scaling exponent remained unchanged (data not shown).

In what follows we set to determine what controls the value of the reaction order. As

previously discussed92, the free energy barrier for nucleation with such two slow steps is a

trade-off between two opposing effects. At a constant concentration, the probability of pro-

tein conversion from a soluble into the β-sheet prone state increases with the increase in the

cluster size N , while the probability of formation of an oligomer, given by c(N), decreases

with N . Hence, there will be some intermediate cluster size optimal for nucleation at a con-

stant concentration, and such an optimal size will increase with the increase in the protein

concentration. In our simulations we can measure the conversion probability of a protein

within an oligomer of the given size per MC cycle , Pc(N) ? , as shown in Fig. 4(a). We

can also separately measure the steady-state concentration of oligomers at a certain protein

concentration, c(N), from simulations where proteins are not allowed to convert into the

β-prone state, as shown in Fig. 4(b). Clearly, the conversion probability rate increases with

increasing oligomer size. The reason for this observation is two-fold: firstly, larger oligomers

contain a larger number of proteins available for conversion; secondly and more importantly,

larger oligomers can have more possible binding partners to energetically stabilise the un-

favourable ‘s” → “β” conversion. After the initial increase in Pc(N), saturation is observed.

On the other hand, the oligomer concentration, c(N), decreases with increasing oligomer

size (Fig. 4(b)). The probability rate of nucleation of a cluster of size N should then be

given by the product Pc(N) · c(N). Fig. 4(c) shows this product versus the oligomer size

for five different protein concentrations. The nucleation probability rate at a certain protein

concentration, given by Pc(N) · c(N), clearly exhibits a maximum, which corresponds to the

most probable oligomer size for nucleation, N∗. It essential to notice that this oligomer size

N∗ does not correspond to the most probable oligomer size observed in the system, which

is N = 2 (Fig. 4(b)). The cluster size distribution, c(N), modulated by the conversion

probability rate, Pc, results in the final nucleation probability, which will depend on the

functional form of Pc, hence the oligomer’s geometry.

The overall rate of nucleation should then depend, up to the prefactor, on the product of
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(a) (b)

(c) (d)

FIG. 3. Kinetics of nucleation via oligomers from Monte Carlo simulations. (a) The rate of nu-

cleation versus protein concentration measured in simulations, for proteins with low propensity for

β-sheet (∆µsβ = 20kT , red circle), and high β-sheet propensity (∆µsβ = 10kT , blue cross). (b)

The concentration of free monomers in solution versus the total protein concentration. The red

solid line has the slope of 1, and the dashed line indicates the critical micelle concentrations. (c)

The average size of the overall nucleating oligomer (red circles) for the low β-propensity protein

(∆µsβ = 20kT from (a), and the average size of the sub-oligomer participating in the conversion

step (black circles) . (d) The average sizes of the overall nucleating oligomer (blue cross) and the

sub-oligomer participating in the conversion step (black square) for the high β-propensity protein

(∆µsβ = 10kT from (a).

the two contributions, summed over all possible cluster sizes:

r ∼
∞∑
N=1

Pc(N) · c(N). (13)
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(a) (b)

(c) (d)

FIG. 4. (a) The calculated probability of “s” → “β” conversion of a single protein within an oligomer

of the size N , for the protein with a low β-propensity, ∆µsβ = 20kT , per one MC step. (b) Steady-

state concentration of “s”-state oligomers of size N for five different protein concentrations. (c)

Product of a conversion probability within an oligomer of a size N , from (a), with the concentration

of the oligomers of size N , from (b).(d) The calculated rate: Sum of the concentrations of all

oligomers multiplied by the corresponding protein conversion rates within an oligomer, across the

concentration range, as in Eq.(13). The nucleation rate measured in simulations for the same set

of parameters is shown for comparison (red circles), taken from Fig.3(a).

Note that the dimension of r are given in the units of concentration per MC step. Using

Eq.(13), we calculated the rate of nucleation, r, for the protein with a low β-propensity

∆µsβ = 20kT (Fig. 4(d)), and compared it to the corresponding nucleation rate measured

directly in simulations. The comparison shows an excellent agreement, up to a prefactor,

16



between the calculated rate and the rate measured in simulations, giving the same scaling

exponent. These results indicate that the reaction order is not only governed by the size of

the nucleating cluster, as it is in the case of classical nucleation, but also by the probability

of conformational conversion within such a cluster, which is an additional slow degree of

freedom.

The probability for the conformational conversion is in general governed by the free energy

difference between the two conformational forms, given by ∆µsβ in our simulations, and the

interactions between the species within the oligomer, given by εss and εsβ in our simulations.

To test the hypotheses that the scaling exponent is controlled by the functional form of

Pc(N), we computed the conversion probability rate Pc(N) for three proteins with different

β-propensities, while keeping the interaction parameters unchanged, as shown in Fig. 5(a).

Trivially, the conversion probability rate increases with increasing β-propensity. However,

its functional form also changes, saturating at smaller oligomer sizes for proteins with higher

β-propensities, as marked by arrows in Fig. 5(a). This saturation can be viewed as the

number of neighbouring proteins needed for the conversion to become sufficiently probable,

which is smaller for proteins with higher β-propensity, and quantifies the cooperativity in

the converting system. Fig. 5(b) shows the calculated nucleation rate, following Eq.(13), for

the three proteins with different β-propensities. A decrease in the β-propensity leads to an

increase in the scaling exponent. This observation is consistent with the observation of an

increase in the conversion cooperativity for conversion. Hence the functional form of Pc(N)

has a profound effect onto the reaction order nc , and nc can be viewed as the number of

proteins within the sub-cluster that are necessary to make the conformational conversion

sufficiently probable .

CONCLUSIONS

In this paper, we have studied the phenomenon of spontaneous nucleation in the context

of protein filament formation, a process which has been discussed in the literature for over

50 years and has important implications in many areas of research. We have considered

the phenomenon of spontaneous fibril formation first by assuming that the cluster size is

the only relevant degree of freedom in the system. In this situation, the nucleation rate is
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(a) (b)

FIG. 5. (a) The calculated probability of “s” → “β” conversion of a single protein within an oligomer

of the size N , for three different β-propensities, from top to bottom: ∆µsβ = 10kT , ∆µsβ = 20kT ,

and ∆µsβ = 30kT . The arrows mark the respective saturation of the conversion probability. (b)

The calculated rate, from Eq.(13), for three different β-propensities.

solely a function of the nucleus size N∗, and the kinetic descriptors commonly measured in

experiments, such as reaction orders and scaling exponents, relate in a direct way with N∗.

We then introduced an additional slow coordinate in the nucleating system, namely the

conformational conversion of the aggregating protein. Using coarse-grained Monte-Carlo

simulations, we probed the kinetics of nucleation of protein filaments with two slow degrees

of freedom. In the case of amyloid nucleation, this includes the aggregation number and the

content of the fibrillar structure, the latter being characterised by the fraction of proteins

in a β-sheet conformation. Our analysis showed that the reaction order in this case is not

equal to the size of the aggregate, but it is modulated by the additional slow coordinate, and

corresponds to the sub-cluster size that directly participates in the conversion. In particular,

when conformational conversion governs the additional slow coordinate, the probability for

the conformational conversion regulates the reaction order. Hence, the reaction order is re-

lated to the cooperativity for conformational conversion, and in our simulations corresponds

to the sub-cluster size in which the conformation conversion becomes substantially probable.

These results provide direct practical insights into the interpretation of kinetic data of fibril

formation.
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