748 research outputs found
Spatial and structural stability in thermoelasto-dynamics on a half-cylinder
EnThe linear nonhomogeneous thermoelastodynamic problem in a half-cylinder is considered subject to assigned initial conditions, and to the displacement and temperature being specified over the base, and vanishing on the lateral boundary. Spatial stability, derived from a differential inequality, establishes that the mean-square volume integrals of displacement and temperature are bounded above by a decaying function of axial distance for each finite positive time instant. Structural stability, which here relates to continuous dependence of the displacement on the thermal coupling, depends upon the construction of further differential inequalities
Density matrix renormalization group for the Berezinskii-Kosterlitz-Thouless transition of the 19-vertex model
We embody the density matrix renormalization group (DMRG) method for the
19-vertex model on a square lattice in order to investigate the
Berezinskii-Kosterlitz-Thouless transition. Elements of the transfer matrix of
the 19-vertex model are classified in terms of the total value of arrows in one
layer of the square lattice. By using this classification, we succeed to reduce
enormously the dimension of the matrix which has to be diagonalized in the DMRG
method. We apply our method to the 19-vertex model with the interaction
and obtain for the conformal anomaly. PACS. 05.90.+m,
02.70.-cComment: RevTeX style, 20 pages, 12 figure
Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals
The staggered 6-vertex model describes the competition between surface
roughening and reconstruction in (100) facets of CsCl type crystals. Its phase
diagram does not have the expected generic structure, due to the presence of a
fully-packed loop-gas line. We prove that the reconstruction and roughening
transitions cannot cross nor merge with this loop-gas line if these degrees of
freedom interact weakly. However, our numerical finite size scaling analysis
shows that the two critical lines merge along the loop-gas line, with strong
coupling scaling properties. The central charge is much larger than 1.5 and
roughening takes place at a surface roughness much larger than the conventional
universal value. It seems that additional fluctuations become critical
simultaneously.Comment: 31 pages, 9 figure
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
A mean field theory is developed for the calculation of the surface free
energy of the staggered BCSOS, (or six vertex) model as function of the surface
orientation and of temperature. The model approximately describes surfaces of
crystals with nearest neighbor attractions and next nearest neighbor
repulsions. The mean field free energy is calculated by expressing the model in
terms of interacting directed walks on a lattice. The resulting equilibrium
shape is very rich with facet boundaries and boundaries between reconstructed
and unreconstructed regions which can be either sharp (first order) or smooth
(continuous). In addition there are tricritical points where a smooth boundary
changes into a sharp one and triple points where three sharp boundaries meet.
Finally our numerical results strongly suggest the existence of conical points,
at which tangent planes of a finite range of orientations all intersect each
other. The thermal evolution of the equilibrium shape in this model shows
strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include
Correlated percolation and the correlated resistor network
We present some exact results on percolation properties of the Ising model,
when the range of the percolating bonds is larger than nearest-neighbors. We
show that for a percolation range to next-nearest neighbors the percolation
threshold Tp is still equal to the Ising critical temperature Tc, and present
the phase diagram for this type of percolation. In addition, we present Monte
Carlo calculations of the finite size behavior of the correlated resistor
network defined on the Ising model. The thermal exponent t of the conductivity
that follows from it is found to be t = 0.2000 +- 0.0007. We observe no
corrections to scaling in its finite size behavior.Comment: 16 pages, REVTeX, 6 figures include
Two-dimensional O(n) model in a staggered field
Nienhuis' truncated O(n) model gives rise to a model of self-avoiding loops
on the hexagonal lattice, each loop having a fugacity of n. We study such loops
subjected to a particular kind of staggered field w, which for n -> infinity
has the geometrical effect of breaking the three-phase coexistence, linked to
the three-colourability of the lattice faces. We show that at T = 0, for w > 1
the model flows to the ferromagnetic Potts model with q=n^2 states, with an
associated fragmentation of the target space of the Coulomb gas. For T>0, there
is a competition between T and w which gives rise to multicritical versions of
the dense and dilute loop universality classes. Via an exact mapping, and
numerical results, we establish that the latter two critical branches coincide
with those found earlier in the O(n) model on the triangular lattice. Using
transfer matrix studies, we have found the renormalisation group flows in the
full phase diagram in the (T,w) plane, with fixed n. Superposing three
copies of such hexagonal-lattice loop models with staggered fields produces a
variety of one or three-species fully-packed loop models on the triangular
lattice with certain geometrical constraints, possessing integer central
charges 0 <= c <= 6. In particular we show that Benjamini and Schramm's RGB
loops have fractal dimension D_f = 3/2.Comment: 40 pages, 17 figure
Monte Carlo simulation of ice models
We propose a number of Monte Carlo algorithms for the simulation of ice
models and compare their efficiency. One of them, a cluster algorithm for the
equivalent three colour model, appears to have a dynamic exponent close to
zero, making it particularly useful for simulations of critical ice models. We
have performed extensive simulations using our algorithms to determine a number
of critical exponents for the square ice and F models.Comment: 32 pages including 15 postscript figures, typeset in LaTeX2e using
the Elsevier macro package elsart.cl
Dynamic Critical Behavior of a Swendsen-Wang-Type Algorithm for the Ashkin-Teller Model
We study the dynamic critical behavior of a Swendsen-Wang-type algorithm for
the Ashkin--Teller model. We find that the Li--Sokal bound on the
autocorrelation time ()
holds along the self-dual curve of the symmetric Ashkin--Teller model, and is
almost but not quite sharp. The ratio appears
to tend to infinity either as a logarithm or as a small power (). In an appendix we discuss the problem of extracting estimates of
the exponential autocorrelation time.Comment: 59 pages including 3 figures, uuencoded g-compressed ps file.
Postscript size = 799740 byte
Two phase transitions in the fully frustrated model
The fully frustrated model on a square lattice is studied by means of
Monte Carlo simulations. A Kosterlitz-Thouless transition is found at , followed by an ordinary Ising transition at a slightly
higher temperature, . The non-Ising exponents reported by
others, are explained as a failure of finite size scaling due to the screening
length associated with the nearby Kosterlitz-Thouless transition.Comment: REVTEX file, 8 pages, 5 figures in uuencoded postscrip
Bloch-Wall Phase Transition in the Spherical Model
The temperature-induced second-order phase transition from Bloch to linear
(Ising-like) domain walls in uniaxial ferromagnets is investigated for the
model of D-component classical spin vectors in the limit D \to \infty. This
exactly soluble model is equivalent to the standard spherical model in the
homogeneous case, but deviates from it and is free from unphysical behavior in
a general inhomogeneous situation. It is shown that the thermal fluctuations of
the transverse magnetization in the wall (the Bloch-wall order parameter)
result in the diminishing of the wall transition temperature T_B in comparison
to its mean-field value, thus favouring the existence of linear walls. For
finite values of T_B an additional anisotropy in the basis plane x,y is
required; in purely uniaxial ferromagnets a domain wall behaves like a
2-dimensional system with a continuous spin symmetry and does not order into
the Bloch one.Comment: 16 pages, 2 figure
- …