Abstract

We study the dynamic critical behavior of a Swendsen-Wang-type algorithm for the Ashkin--Teller model. We find that the Li--Sokal bound on the autocorrelation time (τint,Econst×CH\tau_{{\rm int},{\cal E}} \ge {\rm const} \times C_H) holds along the self-dual curve of the symmetric Ashkin--Teller model, and is almost but not quite sharp. The ratio τint,E/CH\tau_{{\rm int},{\cal E}} / C_H appears to tend to infinity either as a logarithm or as a small power (0.05p0.120.05 \leq p \leq 0.12). In an appendix we discuss the problem of extracting estimates of the exponential autocorrelation time.Comment: 59 pages including 3 figures, uuencoded g-compressed ps file. Postscript size = 799740 byte

    Similar works

    Available Versions

    Last time updated on 23/03/2019