72 research outputs found

    Foodborne disease outbreaks in Australia 2001-2009

    Get PDF
    BACKGROUND: Analysis of surveillance data from foodborne disease outbreaks can help identify high-risk aetiological agents, food vehicles and settings. This information may help prevent future illness by informing the development of public health policy

    Spatial and temporal patterns of locally-acquired dengue transmission in Northern Queensland, Australia, 1993-2012

    Get PDF
    Background: Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012.Methods: Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results: 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland.Conclusions: Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas

    Evolutionary winners are ecological losers among oceanic island plants

    Get PDF
    Aim Adaptive radiation, in which successful lineages proliferate by exploiting untapped niche space, provides a popular but potentially misleading characterization of evolution on oceanic islands. Here we analyse the respective roles of members of in situ diversified vs. non-diversified lineages in shaping the main ecosystems of an archipelago to explore the relationship between evolutionary and ecological ‘success’. Location Canary Islands. Taxon Vascular plants. Methods We quantified the abundance/rarity of the native flora according to the geographical range (number of islands where present and geographical extent of the range), habitat breadth (climatic niche) and local abundance (cover) using species distribution data based on 500 × 500 m grid cells and 2000 vegetation inventories located all over the archipelago. Results Species of diversified lineages have significantly smaller geographic ranges, narrower climatic niches and lower local abundances than those of non-diversified lineages. Species rarity increased with the degree of diversification. The diversified Canarian flora is mainly comprised by shrubs. At both archipelagic and island level, the four core ecosystems (Euphorbia scrub, thermophilous woodlands, laurel forest and pine forest) were dominated by non-diversified lineages species, with diversified lineages species providing <25% cover. Species of diversified lineages, although constituting 54% of the archipelagic native flora, were only abundant in two rare ecosystems: high mountain scrub and rock communities. Main conclusions Radiated species, endemic products of in situ speciation, are mostly rare in all three rarity axes and typically do not play an important role in structuring plant communities on the Canaries. The vegetation of the major ecosystem types is dominated by plants representing non-diversified lineages (species that derive from immigration and accumulation), while species of evolutionarily successful lineages are abundant only in marginal habitats and could, therefore, be considered ecological losers. Within this particular oceanic archipelago, and we posit within at least some others, evolutionary success in plants is accomplished predominantly at the margins.publishedVersio

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science

    Trends and risk factors for human Q fever in Australia, 1991-2014

    No full text
    Australian abattoir workers, farmers, veterinarians and people handling animal birthing products or slaughtering animals continue to be at high risk of Q fever despite an effective vaccine being available. National Notifiable Diseases Surveillance System data were analysed for the period 1991-2014, along with enhanced risk factor data from notified cases in the states of New South Wales and Queensland, to examine changes in the epidemiology of Q fever in Australia. The national Q fever notification rate reduced by 20% [ incident rate ratio (IRR) 0.82] following the end of the National Q fever Management Program in 2006, and has increased since 2009 (IRR 1.01-1.34). Highest rates were in males aged 40-59 years (5.9/ 100 000) and 87% of Q fever cases occurred in New South Wales and Queensland. The age of Q fever cases and proportion of females increased over the study period. Based on the enhanced risk factor data, the most frequently listed occupation for Q fever cases involved contact with livestock, followed by ` no known risk' occupations. More complete and comparable enhanced risk factor data, at the State/ Territory and national levels, would aid in further understanding of the epidemiology of Q fever

    Cope’s Rule In The Evolution Of Marine Animals

    No full text
    Cope’s rule proposes that animal lineages evolve toward larger body size over time. To test this hypothesis across all marine animals, we compiled a data set of body sizes for 17,208 genera of marine animals spanning the past 542 million years. Mean biovolume across genera has increased by a factor of 150 since the Cambrian, whereas minimum biovolume has decreased by less than a factor of 10, and maximum biovolume has increased by more than a factor of 100,000. Neutral drift from a small initial value cannot explain this pattern. Instead, most of the size increase reflects differential diversification across classes, indicating that the pattern does not reflect a simple scaling-up of widespread and persistent selection for larger size within populations
    • 

    corecore