38 research outputs found

    26Al yields from rotating Wolf--Rayet star models

    Full text link
    We present new 26^{26}Al stellar yields from rotating Wolf--Rayet stellar models which, at solar metallicity, well reproduce the observed properties of the Wolf-Rayet populations. These new yields are enhanced with respect to non--rotating models, even with respect to non--rotating models computed with enhanced mass loss rates. We briefly discuss some implications of the use of these new yields for estimating the global contribution of Wolf-Rayet stars to the quantity of 26^{26}Al now present in the Milky Way.Comment: 6 pages, 2 figures, to appear in New Astronomy Review

    The 511 keV emission from positron annihilation in the Galaxy

    Full text link
    The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990's with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather "exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.Comment: 62 pages, 35 figures. Review paper to appear in Reviews of Modern Physic

    SPI observations of positron annihilation radiation from the 4th galactic quadrant: sky distribution

    Full text link
    During its first year in orbit the INTEGRAL observatory performed deep exposures of the Galactic Center region and scanning observations of the Galactic plane. We report on the status of our analysis of the positron annihilation radiation from the 4th Galactic quadrant with the spectrometer SPI, focusing on the sky distribution of the 511 keV line emission. The analysis methods are described; current constraints and limits on the Galactic bulge emission and the bulge-to-disk ratio are presented.Comment: 4 pages, 2 figures, accepted for publication in the proceedings of the 5th INTEGRAL worksho

    The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL

    Full text link
    We present a measurement of the sky distribution of positronium (Ps) annihilation continuum emission obtained with the SPI spectrometer on board ESA's INTEGRAL observatory. The only sky region from which significant Ps continuum emission is detected is the Galactic bulge. The Ps continuum emission is circularly symmetric about the Galactic centre, with an extension of about 8 deg FWHM. Within measurement uncertainties, the sky distribution of the Ps continuum emission is consistent with that found by us for the 511 keV electron-positron annihilation line using SPI. Assuming that 511 keV line and Ps continuum emission follow the same spatial distribution, we derive a Ps fraction of 0.92 +/- 0.09. These results strengthen our conclusions regarding the origin of positrons in our Galaxy based on observations of the 511 keV line. In particular, they suggest that the main source of Galactic positrons is associated with an old stellar population, such as Type Ia supernovae, classical novae, or low-mass X-ray binaries. Light dark matter is a possible alternative source of positrons.Comment: accepted for publication by A&

    26Al in the inner Galaxy

    Full text link
    We performed a spectroscopic study of the 1809 keV gamma-ray line from 26Al decay in the Galaxy using the SPI imaging spectrometer with its high-resolution Ge detector camera on the INTEGRAL observatory. We analyzed observations of the first two mission years, fitting spectra from all 7130 telescope pointings in narrow energy bins to models of instrumental background and the 26Al sky. Instrumental background is estimated from independent tracers of cosmic-ray activation. The shape of the 26Al signal is compared to the instrumental response to extract the width of the celestial line. We detect the 26Al line at \~16sigma significance. The line is broadened only slightly, if at all; we constrain the width to be below 2.8 keV (FWHM, 2 sigma). The average Doppler velocities of 26Al at the time of its decay in the interstellar medium (decay time~1.04 My) therefore are probably around 100 km/s, in agreement with expectations from Galactic rotation and interstellar turbulence. The flux and spatial distribution of the emission are found consistent with previous observations. The derived amount of 26Al in the Galaxy is 2.8 (+/-0.8) M_solar.Comment: 7 pages with 7 figures; accepted for publication in Astronomy & Astrophysic

    Cyclone Hard X-Ray Observatory

    Get PDF
    In response to the recent NASA-SMEX Announcement of Opportunity, our collaboration proposed Cyclone, the Cyclotron/Nuclear Explorer. Cyclone is a broadband pointed astrophysical observatory, combining the highest spectral resolutions (E/(Delta) E approximately 30 - 300) and angular resolutions (15') achieved in the optimized hard X-ray range (10 - 200 keV). The instrument consists of 19 co-aligned rotation modulation collimator (RMC) telescopes, each with a high spectral resolution, 6-cm diameter germanium detector (GeD) covering energies from 3 keV to 600 keV. Both the optics and detectors are actively shielded with 15-mm BGO to gain low background an high sensitivity to astrophysical sources. A 550-km altitude, circular equatorial orbit also minimizes background. Building strongly upon instrumental heritage from the High-Energy Solar Spectroscopic Imager (HESSI) program, Cyclone would be ready for launch by September 2003. The instrument design and expected performance are discussed, as well as a brief overview of scientific goals

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    corecore