87 research outputs found

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    Get PDF
    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci

    molsigdb.v3.0.entrezForR.txt

    No full text
    molsigdb.v3.0.entrezForR contains the molsigdb, downloaded from the Broad Institute. The file is used to read the molsigdb.v3.0 gene sets into R

    runSAPSonPermutedData

    No full text
    runSAPSonPermutedData.R – This R script generates the P_pure, P_random, and P_enrichment on random gene sets. This "biologically null" set of SAPS scores is used to compute the SAPS_q_values on the msigdb gene sets

    OvaryOutput_SubScaled

    No full text
    OvaryOutput_SubScaled.RData is an R-workspace contains the objects: allPs, allPs.adj, sumTable. These were generated from applying the SAPS method to the ovarian cancer meta-data set scaled by transforming each feature into its Z score across all patients within a ovarian cancer subtype data-set prior to merging across data-sets
    • …
    corecore