10 research outputs found

    Cloud Thermodynamic Phase Detection with Polarimetrically Sensitive Passive Sky Radiometers

    Get PDF
    The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e. if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine Cloud Optical Depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (negative) or perpendicular (positive) to that plane. Since the quantity of polarization is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60 degrees are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles). We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometerradiometer that comprise AERONET. Most algorithms that exploit Cimel polarized observations use the Degree of Linear Polarization (DoLP), not the individual Stokes vector elements (such as Q). For this reason, we had no information about the accuracy of Cimel observed Q and the potential for cloud phase determination. Indeed, comparisons to ceilometer observations with a single polarized spectral channel version of the Cimel at a site in the Netherlands showed little correlation. Comparisons to Lidar observations with a more recently developed, multi-wavelength polarized Cimel in Maryland, USA, show more promise. This divergence between simulations and observations has prompted us to begin the development of a small test instrument called the Sky Polarization Radiometric Instrument for Test and Evaluation (SPRITE). This instrument is specifically devoted to the accurate observation of Q, and the testing of calibration and uncertainty assessment techniques, with the ultimate goal of understanding the practical feasibility of these measurements

    Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    Get PDF
    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate

    The plankton, aerosol, cloud, ocean ecosystem mission status, science, advances

    Get PDF
    The Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) mission represents the National Aeronautics and Space Administration\u27s (NASA) next investment in satellite ocean color and the study of Earth\u27s ocean-atmosphere system, enabling new insights into oceanographic and atmospheric responses to Earth\u27s changing climate. PACE objectives include extending systematic cloud, aerosol, and ocean biological and biogeochemical data records, making essential ocean color measurements to further understand marine carbon cycles, food-web processes, and ecosystem responses to a changing climate, and improving knowledge of how aerosols influence ocean ecosystems and, conversely, how ocean ecosystems and photochemical processes affect the atmosphere. PACE objectives also encompass management of fisheries, large freshwater bodies, and air and water quality and reducing uncertainties in climate and radiative forcing models of the Earth system. PACE observations will provide information on radiative properties of land surfaces and characterization of the vegetation and soils that dominate their reflectance. The primary PACE instrument is a spectrometer that spans the ultraviolet to shortwave-infrared wavelengths, with a ground sample distance of 1 km at nadir. This payload is complemented by two multiangle polarimeters with spectral ranges that span the visible to near-infrared region. Scheduled for launch in late 2022 to early 2023, the PACE observatory will enable significant advances in the study of Earth\u27s biogeochemistry, carbon cycle, clouds, hydrosols, and aerosols in the ocean-atmosphere-land system. Here, we present an overview of the PACE mission, including its developmental history, science objectives, instrument payload, observatory characteristics, and data products

    Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill

    Get PDF
    In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by prohibitive variability in atmospheric conditions (very inhomogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essentially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polarization measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the remote sensing of even thin cold clouds

    Water-Leaving Contribution to Polarized Radiation Field Over Ocean

    No full text
    The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) includes contributions from the atmosphere, surface, and water body. Atmo-spheric correction of ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which ocean bio-optical properties can be obtained. Knowledge of the ab-solute and relative magnitudes of water-leaving signal in the TOA radiation field is important for designing new atmospheric correction algorithms and developing retrieval algorithms for new ocean biogeochemical parameters. In this paper we present a systematic sensitivity study of water-leaving contribution to the TOA radiation field, from 340 nm to 865 nm, with polarization included. Ocean water inherent optical properties are derived from bio-optical models for two kinds of waters, one dominated by phytoplankton (PDW) and the other by non-algae particles (NDW). In addition to elastic scattering, Raman scattering and fluorescence from dissolved organic matter in ocean waters are included. Our sensitivity study shows that the polarized reflectance is minimized for both CAOS and ocean signals in the backscattering half plane, which leads to numerical instability when calculating water leaving relative contribution, the ratio between polarized water leaving and CAOS signals. If the backscattering plane is excluded, the water-leaving polarized signal contributes less than 9% to the TOA polarized reflectance for PDW in the whole spectra. For NDW, the polarized water leaving contribution can be as much as 20% in the wavelength range from 470 to 670 nm. For wavelengths shorter than 452 nm or longer than 865 nm, the water leaving contribution to the TOA polarized reflectance is in general smaller than 5% for NDW. For the TOA total reflectance, the water-leaving contribution has maximum values ranging from 7% to 16% at variable wavelengths from 400 nm to 550 nm from PDW. The water leaving contribution to the TOA total reflectance can be as large as 35%for NDW, which is in general peaked at 550 nm. Both the total and polarized reflectances from water-leaving contributions approach zero in the ultraviolet and near infrared bands. These facts can be used as constraints or guidelines when estimating the water leaving contribution to the TOA reflectance for new atmospheric correction algorithms for ocean color imagery

    Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    No full text
    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin

    No full text
    Southern Africa produces almost a third of the Earth’s biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a five-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three Intensive Observation Periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June-October), aerosol particles reaching 3–5 km in altitude are transported westward over the South-East Atlantic, where they interact with one of the largest subtropical stratocumulus subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, and due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017 and October 2018 (totaling ~350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ~100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science questions centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects; (b) effects of aerosol absorption on atmospheric circulation and clouds; (c) aerosol-cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the data set it produced

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the southeast Atlantic basin

    No full text
    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June-October), aerosol particles reaching 3-5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling similar to 350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling similar to 100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol-cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin

    No full text
    International audienceAbstract. Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ∼350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ∼100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced
    corecore