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Abstract 2. Aerosol classification method 3. Appllcatlon to POLDER PARASOL Retrleved Aerosol Parameters
undeﬁtgndmg aerosol :{sou;ces, trarsfg_rn:_atlo.ns, eﬂ;ects, alf‘d f?edv?/?’(ﬁk mechanisms; to mp:oymg atCﬁ_L:racy of satellltetretrle\ﬁ!f, atrr:d to polarimeter on the PARASOL spacecratt. which uses more wavelengths and includes particle non-sphericity (though in a different way than the AERONET algorithm). Our POLDER classification uses 4 parameters,
quantitying assessments ot aerosol radialive Impacts on climate. vvith ongoing improvements in sateliite measurement capabiiity, the SSA,,, EAE RRI.-,, and dSSA Polder-retrieved uncertainties are used in two ways: to filter input points (8SSA,,,<0.075, SEAE <0.6, 5RRI,,<0.1,
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number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth at one or a few 2.1 Examples of aerosol paramete rs in elatlon to aerOSOI types  3dSSAgg3 40, V(2) *0.075) and to define a modified Mahalanobis distance, Dg, that treats an N-dimensional data point and its N-dimensional error bar as a pseudo -cluster.
wavelengths to a list that now includes complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at In Russell et al. (2010) we showed that correlations between aerosol g _ | - _ | _ | |
several wavelengths; wavelength dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and type and aerosol optical parameters, which had previously been (a) g_ (b) '\\ e o Fig. 4 shows results of applying our aerosol classification technique to a PARASOL data set from FORTH-Crete, an island in the Eastern Mediterranean that can experience
shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe noted via radiometric measurements of aerosol layers (e.g., § 0.950 | % S different aerosol types at different times. Fig. 5 shows the classification results Fia. 5. The classification
such a method, which uses a modified Mahalanobis distance to quantify how far a data point described by N aerosol parameters is from Bergstrom et al., 2007), and via in situ measurements of aerosol = ] P as a time series. Fig. 6 examines the case of April 20, 2008 (dashed vertical reg.ult-s. of Fig. 4 (colored
each of several prespecified classes. The method makes explicit use of uncertainties in input parameters, treating a point and its N- volumes (e.g., Shinozuka et al., 2009), were also present in g % 2 I line in Fig. 5) by showing the many ancillary data sets that are consistent with oints) shov?rli as a 5-vear
dimensional uncertainty as an extended data point or pseudo-cluster E. It then uses a modified Mahalanobis distance, D.., to assign an AERONET-retrieved parameters describing full aerosol vertical £ 8 450 e - our POLDER classification result (red color indicates it is closest to Pure Dust). fime series in the 4 y
observation to the class (cluster) C that has minimum D, from the point (equivalently, the class to which the point has maximum probability columns (as represented by the AERONET pre-Version 1 data in <§ e 2 . =y 1.05 l , , | ] parameters used by the
of belonging). The method also uses Wilks’ overall lambda to indicate how well the input data lend themselves to separation into classes and . Dubovik et al. (2002)). In particular, as illustrated in Fig. 2, 5 - SN il (a) classification al or)i,thm'
Wilks’ partial lambda to indicate the relative discriminatory power of each parameter. We use AERONET-retrieved parameters to define 7 « SSA spectra from three desert dust sites (red curves in Fig. 2a) @ 8 R N 1k Urb’t:‘g‘éiﬁ’o?"?’s‘?mlﬁl'“m . EAE SSA g RRI '
prespecified clusters (pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass have slopes opposite to those for four urban-industrial and four < - S € Birs D and gégz 4?|_1r"e 670°
smoke, light biomass smoke, pure marine), and we demonstrate application of the method to a 5-year record of retrievals from the biomass burning sites (black and green curves). e e s 100 e AR = 0_95_%,%33,';. . 1 extensive i;‘);—:ig;ble AOD
POLDER-3 polarimeter on the PARASOL spacecraft over the island of Crete, Greece. Results show changes of aerosol type at this location « Despite the variety of SSA spectral shapes in Fig. 2a, the Wavelength, nm Wavelength, nm 5'5 ol Dus = is shown in the |O\;V98t 1
in the eastern Mediterranean Sea, which is influenced by a wide variety of aerosol sources. corresponding curves in Fig. 2b of aerosol absorption optical depth Fig. 2. (a) Spectra of AERONET-derived Single E 0.9¢ 1 frame for reference only: it
Fig. 1. (a, b) (AAOD) are all nearly straight Iine§ in the log-log plot. In other words, © Scattering Albedo (SSA) from Dubovik et al. ‘é, is not used by the ’
1. BaCkg round and goal Plg. s of Sah they have nearly constant absorption Angstrom exponent (AAE). (2002). Black: Site/season designated by Dubovik = 0.85) : classification algorithm.
» e 4 umes ot sahara In Russell et al. (2010) we also noted the overlap in AAE values et al. (2002) as Urban/Industrial or Mixed: Green: i .
In some conditions aerosol type can be identified in imagery from dust and wildfire tor some urban-industrial and biomass-burning sites. indicating that ) o ’ _ L Gray points have error bars
space by tracing the aerosol back to its source (e.g., the individual = smoke in MODIS o] el ot tor var ANE aliore, el Igad e J Analogous for Biomass Burning; Red-Brown: 5 . ) that exceed our input limits,
plumes in Fig. 1a,b). In other cases (e.g., Fig. 1¢) it is tempting to imagery. (c) Image J guity. Desert Dust. (b) Corresponding Aerosol % m—— and hence were not
guess aerosol type based on aerosol location. However, this can of a large-scale Absorption Optical Depth (AAOD) spectra. 075 | o pro . classified. Dashed vertical
lead to errors, as exemplified by Fig. 1d, in which Alaskan wildfire - haze over the ~We showed that using a two-dimensional plot, of AAE vs EAE, reduced the ambiguity but did not eliminate it. And we | — L7 5% | | | | | | Vine marks April 20, 2008,
smoke, carried down the Mississippi Valley, along the Gulf Coast eastern US and suggested the use of other retrieved aerosol parameters in multidimensional analyses as a potential way to reduce remaining 205 0 05 1 15 2 25 the dust case explored in Tul05 Jan06 Jul06 Jan07 Jul07 de08 Joul0s Jan09 Jul09
and up the Atlantic seaboard, caused a haze layer off New England, = western Atlantic. ambiguity. s Extinction Angstrom Exponent (491,863 nm) Fig. 6. ~ :
an area typically impacted by urban-industrial pollution. (d) Image of a In the work reported here we have investigated such multidimensional clustering analyses, using both AERONET and | ' ' ' ' ' (b) —
The goal of this research has been to develop robust methods for large-scale haze - PARASOL data. The method we have found most effective is analogous to the method described by Burton et al. (2012). We 16 :
identifying aerosol type from the opto-physical information over the same area |~ == = call this method Specified Clustering and Mahalanobis Classification, and we illustrate it in Fig. 3 and subsequent figures. rucows I
. ) B : =y BB-white x
retrievable from an individual image pixel or group of pixels used in ~ as (c), which was s £ 1.55 mo.uk g
a retrieval (see, 6.q., the pixel groupings used by the PARASOL  traceable back to | S I 2.2. Specified clustering and Mahalanobis classmcatlon 3
retrieval of Dubovik et al. (2011)). Alaska wildfires. W | ¥ Specified clustering (e.g., Moussiades and Fig. 3. (a) A 2-dimensional " |@ T g | S coragn .
To illustrate the variety of parameters available, Table 1 lists examples of aerosol data products produced by selected spaceborne, airborne, ~ Vakali, 2009) uses “a priori” informationina  scatterplot of datafrom ¢ = o 1.45 1 : / -
and surface-based sensors. To save space, Table 1 focuses on sensors or combinations that produce or promise more aerosol parameters reference” data set to assign points to AERONET Version 2 g 055} 2 - i || \\“j“
than the MODIS or MISR operational sets, although MODIS and MISR have supported very useful aerosol classification studies with their clusters. This a priori information can include  retrievals at sites/months 38 s | '
analyses or previous studies) beyond the al. (2002) or Cattrall et al. 2°% s | C 03 0R 0N
Table 1. Aerosol properties retrieved from various remote sensors (see acronyms in Table 1). A =wavelength. r,=volume median radius; o,=standard AOD = Aerosol optical parameters that will be available to the (2005) to be dominated b 3 oel 2D Mahal. Cumul. > | US Dept of State Geographe o o o J
deviation; C,=volume concentration. r,=effective radius; v,=effective variance; FMF=fine mode fraction; N=number concentration. S,=aerosol extinction- . gptical depth. L . . y ? | s 13| —=—— ! \ \ el WE e i
to-backscatter ratio (i.e. lidar ratio). 4STAR is designed to produce AERONET-like retrievals from airborne sun and sky measurements. A classification method in the general case. In certain aerosol types. D o7 | e v e - :3 32«2 | ‘i 532 nm Total Atienusted Backacatier, km” ar’ UTC: 20080420 11:21:45.5 1o 2008-04-20 11:36:14.1 Version: 3.01 Nominal Daytime
_—_- T —— Ss'i‘t = Single Fig. 3a, a 2-dimensional scatterplot of SSA,y, Abbreviated names of e 1255 : L 1 1 O_G-H
scatterin : e . ' ‘ * l ' 20.5 0 0.5 1 1.5 2 2.5
AERONET | POLDER-3 on PARASOL | Glory APS RSP oMI HSRL-2 CALIOP a|bedol_ ) iz el Ele=SINE TS NI classes/specified clusters Extinction Angstrom Exponent (491,863 nm) b) o
Version 2 | Dubovik et al. | Hasekamp et | Mishchenko | Cairns et al. Jethva | Hostetleretal. | (e.g., Winker et al., RR| = Real Version 2 Level 2.0 retrieved data points to (e.g., “DevUrb”) are 0.1 ' | ' ] | 04
or 4STAR (2011) al. (2011) and | etal. (2007) | (1999, 2009), and (2012) 2009; Vaughan et al., fo ctive ind clusters (symbol colors) using the aerosol type defined in Table 2. (b) As - (C)_
Aerosol spectro- updates Knobelspiesse Torres 2009; Liu et al 2010) refractive I_n ex. designations of Dubovik et al. (2()()2) or in (a), but using the g ' L L Sy:bol ' N = '
rroperty micter _ etal. (2011). | (2011) : ’ IRI'= Imaginary Cattrall et al. (2005), which specify months dimensions (parameters) ¢ 0.06 e bust [+ T i - 0.2
AOD 7 A\, 340- 6 A, 440-1020 | 491, 670, >3 A\, typic’ly | 9 A, 410-2250 | 388 nm™ | 355, 532 nm 532 nm refractive index. during which certain aerosol tvpes tend to RRL... vs EAE to 8 = BB-dark
1020 nm' | nm 863,1020 nm' | 410-865 nm' | nm' | 4 ' o ot cortain sites. Thi yb | i 6t7° te h 4tg|:’863 lative = = 004;:3:&’:3. i - 0.0
SSA 4 )\, 440- 6 )\', 440-1020 | 491, 670, >3 A '[ypiC’ly From RRI, 388 nm From the basic Om|na.? at cer a|n. Si eS.. IS IS an eXxample | -us raté now e reiatlive g % oo Poll. Dust | = v
1020 nm - 863.1020 nm | 410-865 nm' | IRL size dist. parameters in of specified clustering. Fig. 3b, analogous to  differences and overlap ¢ 8 w )
RRI 4 N, 440- 6 N, 440-1020 | A=indep, 491- | =3 A, typic’ly | A—indep, 410- Table 1, other Fig. 3a, substitutes RRlg;, for SSA 9, to between classes can & o o s 0 : : S y———
1020 nm Am 1020 nm 410-865 nm' | 1590 nm' parameters can illustrate how the relative differences and change with different 1 e TS I 5 C) 1.0, 5 f)
[RI 4\, 440- 6 A, 440-1020 | A—indep, 491- A—indep, 410- be derived, overlap between classes can change when dimensions (parameters). %; 0 05 ; 15 > 2.5 g 0=y | 0.8 £
1020 nm nm 1020 nm 1590 nm' some of which ™ Th ¢ Extinction Angstrom Exponent (491,863 nm) S odl i . v
Size By Len ™ | Lo O™ Ie, Ve Te, Ve Te, Ve can be very different parameters are used. The names o Table 2. Aerosol classes (specified clusters) currently used in our aerosol classification method S e 0.6 g
parameters | FMF()) useful for aerospl cllusters (equwa_lently, classes or types) ——— 00l | a4 ' |
Column | C, C. N (cm™)’ N(mum™)’ aerosol used in Fig. 3 are described more fully in Table 2, | Class name Included sites, numbers of data points, periods ' - et BB 04 L | .' I = 11 1
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