88 research outputs found

    Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PD-(D/E)XK nucleases constitute a large and highly diverse superfamily of enzymes that display little sequence similarity despite retaining a common core fold and a few critical active site residues. This makes identification of new PD-(D/E)XK nuclease families a challenging task as they usually escape detection with standard sequence-based methods. We developed a modified transitive meta profile search approach and to consider the structural diversity of PD-(D/E)XK nuclease fold more thoroughly we analyzed also lower than threshold Meta-BASIC hits to select potentially correct predictions placed among unreliable or incorrect ones.</p> <p>Results</p> <p>Application of a modified transitive Meta-BASIC searches on updated PFAM families and PDB structures resulted in detection of five new PD-(D/E)XK nuclease families encompassing hundreds of so far uncharacterized and poorly annotated proteins. These include four families catalogued in PFAM database as domains of unknown function (DUF506, DUF524, DUF1626 and DUF1703) and YhgA-like family of putative transposases. Three of these families represent extremely distant homologs (DUF506, DUF524, and YhgA-like), while two are newly defined in updated database (DUF1626 and DUF1703). In addition, we also confidently identified an extended AAA-ATPase domain in the N-terminal region of DUF1703 family proteins.</p> <p>Conclusion</p> <p>Obtained results suggest that detailed analysis of below threshold Meta-BASIC hits may push limits further for distant homology detection in the 'midnight zone' of homology. All identified families conserve the core evolutionary fold, secondary structure and hydrophobic patterns common to existing PD-(D/E)XK nucleases and maintain critical active site motifs that contribute to nucleic acid cleavage. Further experimental investigations should address the predicted activity and clarify potential substrates providing further insight into detailed biological role of these newly detected nucleases.</p

    Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain.

    Get PDF
    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species

    Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response.

    Get PDF
    Human cytomegalovirus (HCMV), a β-herpesvirus, has evolved many strategies to subvert both innate and adaptive host immunity in order to ensure its survival and propagation within the host. Induction of IL-8 is particularly important during HCMV infection as neutrophils, primarily attracted by IL-8, play a key role in virus dissemination. Moreover, IL-8 has a positive effect in the replication of HCMV. This work has identified an HCMV gene (UL76), with the relevant property of inducing IL-8 expression at both transcriptional and protein levels. Up-regulation of IL-8 by UL76 results from activation of the NF-kB pathway as inhibition of both IKK-β activity or degradation of Ikβα abolishes the IL-8 induction and, concomitantly, expression of UL76 is associated with the translocation of p65 to the nucleus where it binds to the IL-8 promoter. Furthermore, the UL76-mediated induction of IL-8 requires ATM and is correlated with the phosphorylation of NEMO on serine 85, indicating that UL76 activates NF-kB pathway by the DNA Damage response, similar to the impact of genotoxic drugs. More importantly, a UL76 deletion mutant virus was significantly less efficient in stimulating IL-8 production than the wild type virus. In addition, there was a significant reduction of IL-8 secretion when ATM -/- cells were infected with wild type HCMV, thus, indicating that ATM is also involved in the induction of IL-8 by HCMV. In conclusion, we demonstrate that expression of UL76 gene induces IL-8 expression as a result of the DNA damage response and that both UL76 and ATM have a role in the mechanism of IL-8 induction during HCMV infection. Hence, this work characterizes a new role of the activation of DNA Damage response in the context of host-pathogen interactions

    Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family

    Get PDF
    Novel family of putative homing endonuclease genes was recently discovered during analyses of metagenomic and genomic sequence data. One such protein is encoded within a group I intron that resides in the recA gene of the Bacillus thuringiensis 0305ϕ8–36 bacteriophage. Named I-Bth0305I, the endonuclease cleaves a DNA target in the uninterrupted recA gene at a position immediately adjacent to the intron insertion site. The enzyme displays a multidomain, homodimeric architecture and footprints a DNA region of ∼60 bp. Its highest specificity corresponds to a 14-bp pseudopalindromic sequence that is directly centered across the DNA cleavage site. Unlike many homing endonucleases, the specificity profile of the enzyme is evenly distributed across much of its target site, such that few single base pair substitutions cause a significant decrease in cleavage activity. A crystal structure of its C-terminal domain confirms a nuclease fold that is homologous to very short patch repair (Vsr) endonucleases. The domain architecture and DNA recognition profile displayed by I-Bth0305I, which is the prototype of a homing lineage that we term the ‘EDxHD’ family, are distinct from previously characterized homing endonucleases

    High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display

    Get PDF
    Experimental analysis and manipulation of protein–DNA interactions pose unique biophysical challenges arising from the structural and chemical homogeneity of DNA polymers. We report the use of yeast surface display for analytical and selection-based applications for the interaction between a LAGLIDADG homing endonuclease and its DNA target. Quantitative flow cytometry using oligonucleotide substrates facilitated a complete profiling of specificity, both for DNA-binding and catalysis, with single base pair resolution. These analyses revealed a comprehensive segregation of binding specificity and affinity to one half of the pseudo-dimeric interaction, while the entire interface contributed specificity at the level of catalysis. A single round of targeted mutagenesis with tandem affinity and catalytic selection steps provided mechanistic insights to the origins of binding and catalytic specificity. These methods represent a dynamic new approach for interrogating specificity in protein–DNA interactions

    DNA recognition and transcriptional regulation by the WhiA sporulation factor

    Get PDF
    Sporulation in the filamentous bacteria Streptomyces coelicolor is a tightly regulated process involving aerial hyphae growth, chromosome segregation, septation and spore maturation. Genetic studies have identified numerous genes that regulate sporulation, including WhiA and the sigma factor WhiG. WhiA, which has been postulated to be a transcriptional regulator, contains two regions typically associated with DNA binding: an N-terminal domain similar to LAGLIDADG homing endonucleases, and a C-terminal helix-turn-helix domain. We characterized several in vitro activities displayed by WhiA. It binds at least two sporulation-specific promoters: its own and that of parABp2. DNA binding is primarily driven by its HTH domain, but requires full-length protein for maximum affinity. WhiA transcription is stimulated by WhiG, while the WhiA protein binds directly to WhiG (leading to inhibition of WhiG-dependent transcription). These separate activities, which resemble a possible feedback loop, may help coordinate the closely timed cessation of aerial growth and subsequent spore formation

    Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile–profile alignments

    Get PDF
    PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile–profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/

    Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death <it>via </it>release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative.</p> <p>Findings</p> <p>Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1.</p> <p>Conclusions</p> <p>Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.</p
    corecore