24 research outputs found

    Mutations in DCDC2 (doublecortin domain-containing protein 2) in neonatal sclerosing cholangitis

    Get PDF
    BACKGROUND & AIMS: Neonatal sclerosing cholangitis (NSC) is a severe neonatal-onset cholangiopathy commonly leading to liver transplantation (LT) for end-stage liver disease in childhood. Liver-biopsy findings histopathologically resemble those in biliary atresia (BA); however, in NSC extrahepatic bile ducts are patent, whilst in BA their lumina are obliterated. NSC is commonly seen in consanguineous kindreds, suggesting autosomal recessive inheritance. METHODS: From 29 NSC patients (24 families) identified, DNA was available in 24 (21 families). Thirteen (7 male) patients (12 families) of consanguineous parentage were selected for whole exome sequencing. Sequence variants were filtered for homozygosity, pathogenicity, minor allele frequency, quality score, and encoded-protein expression pattern. RESULTS: Four of 13 patients were homozygous and two were compound heterozygous for mutations in DCDC2, encoding doublecortin domain containing 2 (DCDC2), expressed in cholangiocyte cilia. Another 11 patients were sequenced: one (with one sibling pair) was compound heterozygous for DCDC2 mutations. All mutations were protein-truncating. In available liver tissue from patients with DCDC2 mutations, immunostaining for human DCDC2 and the ciliary protein acetylated alpha-tubulin (ACALT) showed no expression (n=6) and transmission electron microscopy found that cholangiocytes lacked primary cilia (n=5). DCDC2 and ACALT were expressed in NSC patients without DCDC2 mutations (n=22). Of the DCDC2, one patient died awaiting LT; five came to LT, of whom one died 2 years later. The other 4 are well. CONCLUSION: Among 24 NSC patients with available DNA, 7 had mutations in DCDC2 (6 of 19 families). NSC patients in substantial proportion harbour mutations in DCDC2. Their disease represents a novel liver-based ciliopathy

    Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers

    Get PDF
    The work of liver stem cell biologists, largely carried out in rodent models, has now started to manifest in human investigations and applications. We can now recognize complex regenerative processes in tissue specimens that had only been suspected for decades, but we also struggle to describe what we see in human tissues in a way that takes into account the findings from the animal investigations, using a language derived from species not, in fact, so much like our own. This international group of liver pathologists and hepatologists, most of whom are actively engaged in both clinical work and scientific research, seeks to arrive at a consensus on nomenclature for normal human livers and human reactive lesions that can facilitate more rapid advancement of our field. (HEPATOLOGY 2004; 39:1739–1745.) The fine detail of normal liver microanatomy is not well understood.1, 2 This is true whether discussing hepatic vasculature, bile ducts, stroma and matrix, innervation, or lymphatics. Some points are known, but gaps remain. The distal branches of the biliary tree are reasonably well defined: the common bile duct arises from confluence of the right and left hepatic ducts, which arise from segmental ducts, which arise from septal ducts arising from interlobular ducts.3 It is known that these interlobular ducts arise from still smaller cholangiocyte-lined structures and that the lumina of these in turn are in structural continuity with the lumen of hepatocellular bile canaliculi. But the terms used for these smallest, most proximal structures have been confusing
    corecore