1,850 research outputs found

    Using Self-Assessment to Build Self-Efficacy and Intrinsic Motivation in Athletes: A Mixed Methods Explanatory Design on Female Adolescent Volleyball Players

    Get PDF
    The aim of this mixed-methods study was to address the issue of burnout and lack of motivation in middle and high school student-athletes. As young athletes cope with school and stresses of extracurricular activities, they often react negatively to external feedback and motivation. The athletes often find themselves in a low state of self-efficacy due to perceived external pressures. This can lead to burnout and ultimately quitting the sport. This study utilized a model that was designed to use self-assessment to increase self-efficacy among athletes to promote a higher sense of accomplishment and motivation toward success. The athletes were all female volleyball players ranging from ages 10-18. Each athlete received a pretest to ascertain her level of motivation prior to the beginning of the athletic season. During their athletic seasons, 30 of the athletes participated in a weekly self-assessment program producing measurable quantitative data to be used as predictors. A sample selection of the athletes was also interviewed to allow for reflection on the study and produce qualitative data intended to predict possible outcomes of the study. Upon completion of the season the athletes took a post-test to measure their levels of motivation. The outcome of the study produced a statistical effect that demonstrated an increase in self-efficacy and self-determination in athletes, and subsequently increased motivation. The qualitative interview data corroborated the effect produced by the quantitative data

    Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity.

    Get PDF
    Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions

    Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically- approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD

    A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p38α mitogen-activated protein kinase (MAPK) is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear.</p> <p>Methods</p> <p>To further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant <it>in vivo </it>kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used <it>in vitro </it>to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and β isoforms.</p> <p>Results</p> <p>Applying the technique to p38α resulted in the identification of seven <it>in vivo </it>phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An <it>in vitro </it>comparison with p38β revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation.</p> <p>Conclusion</p> <p>Our results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38β and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.</p

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    A Note on Computable Embeddings for Ordinals and Their Reverses

    Full text link
    We continue the study of computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that although {ω2,ω2}\{\omega \cdot 2, \omega^\star \cdot 2\} is computably embeddable in {ω2,(ω2)}\{\omega^2, {(\omega^2)}^\star\}, the class {ωk,ωk}\{\omega \cdot k,\omega^\star \cdot k\} is \emph{not} computably embeddable in {ω2,(ω2)}\{\omega^2, {(\omega^2)}^\star\} for any natural number k3k \geq 3.Comment: 13 pages, accepted to CiE 202
    corecore